正数列{An}An与2的等差中项等于Sn与2的等比中项.1.求{An}是等差数列.2.求An的通项公式.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:42:29
正数列{An}An与2的等差中项等于Sn与2的等比中项.1.求{An}是等差数列.2.求An的通项公式.
3.Bn=1/2【(An+1/An)+(An/An+1)】(n是正整数),求Sbn.
3.Bn=1/2【(An+1/An)+(An/An+1)】(n是正整数),求Sbn.
1.
(an + 2)/2=√(2Sn)
an + 2=2√(2Sn)
(an + 2)²=8Sn…………①
∴[a(n-1) + 2]²=8S(n-1)…………②
①-②,得
(an + 2)²-[a(n-1) + 2]²=8Sn-8S(n-1)
an² + 4an + 4 - a(n-1)² - 4a(n-1) - 4=8an
an² - a(n-1)² -4an -4a(n-1)=0
[an - a(n-1)]·[an + a(n-1)]-4[an + a(n-1)]=0
[an - a(n-1) -4]·[an + a(n-1)]=0
∵an>0,∴an + a(n-1)≠0
∴an - a(n-1) -4=0,即an - a(n-1) = 4
∴数列{an}是等差数列.
2.
(a1+2)/2=√(2S1)=√(2a1)
∴a1=2
∴an=a1+(n-1)d=2+4(n-1)=4n-2
3.
Bn=1/2[(An+1/An)+(An/An+1)]
=1/2[(4n+2)/(4n-2)+(4n-2)/(4n+2)]
=1/2[(4n-2+4)/(4n-2) + (4n+2-4)/(4n+2)]
=1/2[1 + 4/(4n-2) + 1 - 4/(4n+2)]
=1/2[2 + 4/(4n-2) - 4/(4n+2)]
=1 + 2/(4n-2) - 2/(4n+2)
=1 + 1/(2n-1) - 1/(2n+1)
∴Sbn= [1 + (1- 1/3)] + [1+ (1/3 - 1/5)] + [ 1 + (1/5 - 1/7)]+ ……+[1 + 1/(2n-1) - 1/(2n+1)]
= n + [1-1/3+1/3-1/5+1/5-1/7+……+1/(2n-1) - 1/(2n+1)]
= n + [1 - 1/(2n+1)]
=(2n²+3n)/(2n+1)
(an + 2)/2=√(2Sn)
an + 2=2√(2Sn)
(an + 2)²=8Sn…………①
∴[a(n-1) + 2]²=8S(n-1)…………②
①-②,得
(an + 2)²-[a(n-1) + 2]²=8Sn-8S(n-1)
an² + 4an + 4 - a(n-1)² - 4a(n-1) - 4=8an
an² - a(n-1)² -4an -4a(n-1)=0
[an - a(n-1)]·[an + a(n-1)]-4[an + a(n-1)]=0
[an - a(n-1) -4]·[an + a(n-1)]=0
∵an>0,∴an + a(n-1)≠0
∴an - a(n-1) -4=0,即an - a(n-1) = 4
∴数列{an}是等差数列.
2.
(a1+2)/2=√(2S1)=√(2a1)
∴a1=2
∴an=a1+(n-1)d=2+4(n-1)=4n-2
3.
Bn=1/2[(An+1/An)+(An/An+1)]
=1/2[(4n+2)/(4n-2)+(4n-2)/(4n+2)]
=1/2[(4n-2+4)/(4n-2) + (4n+2-4)/(4n+2)]
=1/2[1 + 4/(4n-2) + 1 - 4/(4n+2)]
=1/2[2 + 4/(4n-2) - 4/(4n+2)]
=1 + 2/(4n-2) - 2/(4n+2)
=1 + 1/(2n-1) - 1/(2n+1)
∴Sbn= [1 + (1- 1/3)] + [1+ (1/3 - 1/5)] + [ 1 + (1/5 - 1/7)]+ ……+[1 + 1/(2n-1) - 1/(2n+1)]
= n + [1-1/3+1/3-1/5+1/5-1/7+……+1/(2n-1) - 1/(2n+1)]
= n + [1 - 1/(2n+1)]
=(2n²+3n)/(2n+1)
正数列{An}An与2的等差中项等于Sn与2的等比中项.1.求{An}是等差数列.2.求An的通项公式.
数列{an},已知an>0,且an与2的等差中项等于Sn与2的等比中项,求{an}的前三项
设各项为正的数列{an}的钱n项和为Sn已知Sn与2的等比中项等于an与2的等差中项证明an为等差数列,求an的
设{an}是正数组成的数列,其前n项和为sn,且an与2的等差中项等于sn与2的等比中项.求此数列的前三项及通项
数列an的各项都为正数,它的前n项和计为Sn,已知an与2的等差中项等于Sn与2的等比中项,求an的前三项(请写过程
设{an}是正数组成的数列,其前n项和为Sn,且对所有的正整数n,an与2的等差中项等于Sn与2的等比中项,求:数列{a
设数列{an}是正数组成的数列,其前n项和Sn,且对任意n属于N*,an与2的等差中项等于Sn与2的等比中项,求
设{an}是正数组成的数列,其前n项和为Sn,且对于所有自然数n,an与2的等差中项等于Sn与2等比中项, (1)求..
数列{an}的各项为正,对任意正整数n,an与2的等差中项等于其前n项和Sn与2的等比中项,求{an}的通项公式
已知an为全为正的数列,an与2的等差中项等于sn与2的等比中项,求an的通项公式
设{an}是正整数组成的数列,其前n项和为sn,且an与2的等差中项等于sn与2的等比中项求{an}的通项公式,
设正数列{an}的前n项和为Sn,且对任意的n属于N*,Sn是an^2和an的等差中项 求数列{an}的通项公式