(数分)定义在[a,b]上的函数f(x)>0,那么它在[a,b]上的定积分是否一定大于0?可能等于0吗?
(数分)定义在[a,b]上的函数f(x)>0,那么它在[a,b]上的定积分是否一定大于0?可能等于0吗?
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f
函数f(x)与xf(x)在[a,b]上连续,且f(x)与xf(x)在[a,b]上的定积分都==0,
f(x)>0 x∈[a,b] 为什么推不出 f(x)对x 在区间[a,b]上的定积分大于0?
已知函数y=f(x)是定义在R上的奇函数,当x大于等于0时f(x)=2x-x的平方.问是否存在这样的正数a,b,当x属于
定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒
用定积分定义计算1/(x^2)在(a,b)上的定积分!
命题设f x 是定义在r上的奇函数且是增函数,若Fa+Fb大于等于0求整a+b大于0
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少
一道高数定积分题目:f(x)在[a,b]上有定义,若|f(x)|在[a,b]的定积分存在,f(x)在[a,b]上的定积分
matlab 求函数f(x)在[a,b]上的定积分的程序
函数f(x)在[a,b]上有定义且|f(x)|在[a,b]上可积,此时f(x)在[a,b]上的定积分为什么不一定存在?