一道大学线性代数题求解
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 18:53:20
一道大学线性代数题求解
已知三个向量组(1):α1,α2,α3;(2):α1,α2,α3,α4;(3)α1,α2,α3,α5,如果R(α1,α2,α3)=R(α1,α2,α3,α4)=3,R(α1,α2,α3,α5)=4,证明:R(α1,α2,α3,α5-α4)=4
已知三个向量组(1):α1,α2,α3;(2):α1,α2,α3,α4;(3)α1,α2,α3,α5,如果R(α1,α2,α3)=R(α1,α2,α3,α4)=3,R(α1,α2,α3,α5)=4,证明:R(α1,α2,α3,α5-α4)=4
由题设R(α1,α2,α3)=R(α1,α2,α3,α4)=3
α1,α2,α3线性无关,α1,α2,α3,α4线性相关
∴α4可由α1,α2,α3线性表出
写为:α4=k1α2+k2α2+k3α3
因为初等变换不改变矩阵的秩
R(α1,α2,α3,α5-α4)
=R(α1,α2,α3,α5-k1α2-k2α2-k3α3)因为初等变换不改变矩阵的秩=R(α1,α2,α3,α5)=4