如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:20:26
如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(1)求证:CE2=CD•CB;
(2)若AB=BC=2cm,求CE和CD的长.
(1)求证:CE2=CD•CB;
(2)若AB=BC=2cm,求CE和CD的长.
证明:(1)连接BE
∵BC为⊙O的切线
∴∠ABC=90°
∵AB为⊙O的直径
∴∠AEB=90°
∴∠DBE+∠OBE=90°,∠AEO+∠OEB=90°
∵OB=OE,∴∠OBE=∠OEB∴∠DBE=∠AEO
∵∠AEO=∠CED
∴∠CED=∠CBE,∵∠C=∠C
∴△CED∽△CBE
∴
CE
CB=
CD
CE
∴CE2=CD•CB(5分).
(2)∵OB=1cm,BC=2cm
∴OC=
5cm
∴CE=OC-OE=(
5-1)cm
由(1)得:CE2=CD•CB
∴(
5-1)2=2CD
∴CD=(3-
5)cm(10分).
∵BC为⊙O的切线
∴∠ABC=90°
∵AB为⊙O的直径
∴∠AEB=90°
∴∠DBE+∠OBE=90°,∠AEO+∠OEB=90°
∵OB=OE,∴∠OBE=∠OEB∴∠DBE=∠AEO
∵∠AEO=∠CED
∴∠CED=∠CBE,∵∠C=∠C
∴△CED∽△CBE
∴
CE
CB=
CD
CE
∴CE2=CD•CB(5分).
(2)∵OB=1cm,BC=2cm
∴OC=
5cm
∴CE=OC-OE=(
5-1)cm
由(1)得:CE2=CD•CB
∴(
5-1)2=2CD
∴CD=(3-
5)cm(10分).
如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
如图,AB为⊙O的直径,C为⊙O上一点,过O作OE⊥BC于点E,过C点作⊙O的切线交OE的延长线与点D,连接BD
急!【初三数学 圆】如图,△ABC中AB=AC,以AB为直径的⊙O交BC于点E,过B作○O的切线,交AC的延长线于D
如图,AB是⊙O的直径,过点A作AC交⊙O于点D,且AD=CD,连接BC,过点D作⊙O的切线交BC于点E.
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.
如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P,
如图,△ABC中,以BC为直径的⊙O交AB于点D,CA是⊙O的切线,AE平分∠BAC交BC于点E,交CD于点F.
如图,AB是⊙O的直径,AD与⊙O相切于点A,过B点作BC∥OD交⊙O于点C,连接OC、AC,AC交OD于点E.
如图,已知AB是⊙O的直径,过⊙O上的点C的切线交AB的延长线于E,AD⊥EC于D且交⊙O于F.连接BC,CF,AC.
如图,BD为圆O的直径,A为弦BC的中点,AD交BC于点E,过D作圆O的切线,交BC的延长线于F,AE=2,
如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点F,交BA的延长线于点E