作业帮 > 数学 > 作业

三角形ABC中,AB>AC,∠A>90度,AB、AC的垂直平分线分别交BC边于D、E两点,求证AD>AE

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 04:04:00
三角形ABC中,AB>AC,∠A>90度,AB、AC的垂直平分线分别交BC边于D、E两点,求证AD>AE
不要用三角函数做噢!
三角形ABC中,AB>AC,∠A>90度,AB、AC的垂直平分线分别交BC边于D、E两点,求证AD>AE
证明:
根据“线段垂直平分线上的点到线段两端的距离相等”
得:AD=BD
所以∠B=∠BAD
因为∠ADE=∠B+∠BAD
所以∠ADE=2∠B
同理可证:∠AED=2∠C
因为AB>AC
所以∠C>∠B(同一三角形中,大边对大角)
所以∠AED>∠ADE
所以AD>AE(同一三角形中,大角对大边)
(注意:∠A>90度的条件用于保证D在线段BE上)