利用定积分证明等式∫f(x)dx=(b-a)∫f[a+(b-a)x]dx,其中b>a,f(x)连续,等号前的积分区是(b
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:33:23
利用定积分证明等式
∫f(x)dx=(b-a)∫f[a+(b-a)x]dx,其中b>a,f(x)连续,等号前的积分区是(b,a),等号后的积分区是(1,0)
∫f(x)dx=(b-a)∫f[a+(b-a)x]dx,其中b>a,f(x)连续,等号前的积分区是(b,a),等号后的积分区是(1,0)
设t=a+(b-a)x,则dx=dt/(b-a) (∵b>a)
∵当x=1时,t=b
当x=0时,t=a
又f(x)连续
∴右边=(b-a)∫(0,1)f[a+(b-a)x]dx (符号∫(A,B)表示A到B积分)
=(b-a)∫(a,b)f(t)dt/(b-a)
=∫(a,b)f(t)dt
=∫(a,b)f(x)dx
=左边
故原等式成立.
∵当x=1时,t=b
当x=0时,t=a
又f(x)连续
∴右边=(b-a)∫(0,1)f[a+(b-a)x]dx (符号∫(A,B)表示A到B积分)
=(b-a)∫(a,b)f(t)dt/(b-a)
=∫(a,b)f(t)dt
=∫(a,b)f(x)dx
=左边
故原等式成立.
利用定积分证明等式∫f(x)dx=(b-a)∫f[a+(b-a)x]dx,其中b>a,f(x)连续,等号前的积分区是(b
定积分证明题:f(x)在闭区间a到b上连续,求证:,∫b到a f(x)dx=,∫b到a f(a+b-x)dx
定积分[a,b]f'(3x)dx=f(b)-f(a) ?
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少
定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒
(高数证明题)f(x)在〔a,b〕上连续,证明∫f(x)dx=(b-a)∫f〔a+(b-a)x〕dx 注:所有∫(积分下
f(x)在[a,b]上连续,定积分∫(上限b,下限a)f(x)dx=0,证明存在ζ∈(a,b),f(ζ)+∫(上限ζ,下
若函数f(x)于闭区间[a,b]内连续,则定积分从a到bf(x)dx=(a-b)定积分从0到1f(a+(b-a)x)dx
f(x) 的导数 f`(x)在[a,b]上连续,且f(b)=a,f(a)=b,证明:定积分∫[a,b]f(x) f`(x
定积分的证明设函数f(x)在[a,b]上连续且单调递增,求证:∫[b,a] xf(x)dx≥[(a+b)/2]∫[b,a
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f
定积分的证明设y=f(x)及y=g(x)在[a,b]上连续.证明: (∫f(x)g(x)dx)^2=0左端的被积函数展开