已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 19:12:28
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.
(1)根据f(x)=cosx的最大值为1,可得f1(x)、f2(x)的解析式.
(2)根据函数f(x)=x2在x∈[-1,4]上的值域,先写出f1(x)、f2(x)的解析式,再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.
(3)先对函数f(x)进行求导判断函数的单调性,进而写出f1(x)、f2(x)的解析式,然后再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.解答:(Ⅰ)由题意可得:f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(Ⅱ) f1(x)={x2,x∈[-1,0)0,x∈[0,4],f2(x)={1,x∈[-1,1)x2,x∈[1,4]
f2(x)-f1(x)={1-x2,x∈[-1,0)1,x∈[0,1)x2,x∈[1,4]
当x∈[-1,0]时,1-x2≤k(x+1),∴k≥1-x,k≥2;
当x∈(0,1)时,1≤k(x+1),∴ k≥1x+1,∴k≥1;
当x∈[1,4]时,x2≤k(x+1),∴ k≥x2x+1,∴ k≥165.
综上所述,∴ k≥165
即存在k=4,使得f(x)是[-1,4]上的4阶收缩函数.
(Ⅲ)f'(x)=-3x2+6x=-3x(x-2),令f'(x)=0得x=0或x=2.
函数f(x)的变化情况如下:
令f(x)=0,解得x=0或3.
(ⅰ)b≤2时,f(x)在[0,b]上单调递增,
因此,f2(x)=f(x)=-x3+3x2,f1(x)=f(0)=0.
因为f(x)=-x3+3x2是[0,b]上的2阶收缩函数,
所以,①f2(x)-f1(x)≤2(x-0)对x∈[0,b]恒成立;
②存在x∈[0,b],使得f2(x)-f1(x)>(x-0)成立.
①即:-x3+3x2≤2x对x∈[0,b]恒成立,
由-x3+3x2≤2x,解得:0≤x≤1或x≥2,
要使-x3+3x2≤2x对x∈[0,b]恒成立,需且只需0<b≤1.
②即:存在x∈[0,b],使得x(x2-3x+1)<0成立.
由x(x2-3x+1)<0得:x<0或 3-52<x<3+52,
所以,需且只需 b>3-52.
综合①②可得:3-52<b≤1.
(ⅱ)当b>2时,显然有 32∈[0,b],由于f(x)在[0,2]上单调递增,
根据定义可得:f2(32)=278,f1(32)=0,
可得 f2(32)-f1(32)=278>2×32=3,
此时,f2(x)-f1(x)≤2(x-0)不成立.
综合ⅰ)ⅱ)可得:3-52<b≤1.
注:在ⅱ)中只要取区间(1,2)内的一个数来构造反例均可,这里用 32只是因为简单而已.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.
(1)根据f(x)=cosx的最大值为1,可得f1(x)、f2(x)的解析式.
(2)根据函数f(x)=x2在x∈[-1,4]上的值域,先写出f1(x)、f2(x)的解析式,再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.
(3)先对函数f(x)进行求导判断函数的单调性,进而写出f1(x)、f2(x)的解析式,然后再由f2(x)-f1(x)≤k(x-a)求出k的范围得到答案.解答:(Ⅰ)由题意可得:f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(Ⅱ) f1(x)={x2,x∈[-1,0)0,x∈[0,4],f2(x)={1,x∈[-1,1)x2,x∈[1,4]
f2(x)-f1(x)={1-x2,x∈[-1,0)1,x∈[0,1)x2,x∈[1,4]
当x∈[-1,0]时,1-x2≤k(x+1),∴k≥1-x,k≥2;
当x∈(0,1)时,1≤k(x+1),∴ k≥1x+1,∴k≥1;
当x∈[1,4]时,x2≤k(x+1),∴ k≥x2x+1,∴ k≥165.
综上所述,∴ k≥165
即存在k=4,使得f(x)是[-1,4]上的4阶收缩函数.
(Ⅲ)f'(x)=-3x2+6x=-3x(x-2),令f'(x)=0得x=0或x=2.
函数f(x)的变化情况如下:
令f(x)=0,解得x=0或3.
(ⅰ)b≤2时,f(x)在[0,b]上单调递增,
因此,f2(x)=f(x)=-x3+3x2,f1(x)=f(0)=0.
因为f(x)=-x3+3x2是[0,b]上的2阶收缩函数,
所以,①f2(x)-f1(x)≤2(x-0)对x∈[0,b]恒成立;
②存在x∈[0,b],使得f2(x)-f1(x)>(x-0)成立.
①即:-x3+3x2≤2x对x∈[0,b]恒成立,
由-x3+3x2≤2x,解得:0≤x≤1或x≥2,
要使-x3+3x2≤2x对x∈[0,b]恒成立,需且只需0<b≤1.
②即:存在x∈[0,b],使得x(x2-3x+1)<0成立.
由x(x2-3x+1)<0得:x<0或 3-52<x<3+52,
所以,需且只需 b>3-52.
综合①②可得:3-52<b≤1.
(ⅱ)当b>2时,显然有 32∈[0,b],由于f(x)在[0,2]上单调递增,
根据定义可得:f2(32)=278,f1(32)=0,
可得 f2(32)-f1(32)=278>2×32=3,
此时,f2(x)-f1(x)≤2(x-0)不成立.
综合ⅰ)ⅱ)可得:3-52<b≤1.
注:在ⅱ)中只要取区间(1,2)内的一个数来构造反例均可,这里用 32只是因为简单而已.
我想你的主要问题是在于对f1(x)和f2(x)的理解吧,这里解释一下:
f1(x)是说在[a,x]上f(x)取到的最小值,需要注意的是,这里的第三个x与前两个x是不一样的,为区别起见,下面用t表示,以第一问为例,a=0,f(t)=cos(t),x∈[0,π],由余弦函数图像易知,cos(t)在[0,x]上的最小值就是cos(x)(因为它在所给区间上是单调的),于是f1(x)=cos(x);而cos(t)在[0,x]上的最大值是1,所以f2(x)=1.
这个问题搞清楚了,第二问应该可以自己看懂,其中有些错误,比如165是16/5等,可能会影响阅读,你自己注意.
第三问相对来说比较难,如果你不是数学基础非常好的话,建议你可以放弃.如果不想放弃的话,那你先把前面的理解了再来继续问我.
f1(x)是说在[a,x]上f(x)取到的最小值,需要注意的是,这里的第三个x与前两个x是不一样的,为区别起见,下面用t表示,以第一问为例,a=0,f(t)=cos(t),x∈[0,π],由余弦函数图像易知,cos(t)在[0,x]上的最小值就是cos(x)(因为它在所给区间上是单调的),于是f1(x)=cos(x);而cos(t)在[0,x]上的最大值是1,所以f2(x)=1.
这个问题搞清楚了,第二问应该可以自己看懂,其中有些错误,比如165是16/5等,可能会影响阅读,你自己注意.
第三问相对来说比较难,如果你不是数学基础非常好的话,建议你可以放弃.如果不想放弃的话,那你先把前面的理解了再来继续问我.
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(
已知函数f(x)的图像在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]) f2(
已知函数f(x)的图象在[a,b]上,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),
用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于x=−12
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f'(a)>0,f′
(2014•淄博三模)对于定义在R上的函数f(x)图象连续不断,若存在常数a(a∈R),使得f(x+a)+af(x)=0
已知函数y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,若存在正数a,b,使得当x∈[a,b]时,f
设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)
已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有唯一零点,如果用“二分法”求这个零点(精确到0.
已知定义在R上的函数f(x)=b-2x\a+2x+1是奇函数求f(x)的解析式