作业帮 > 数学 > 作业

设向量m=(cosx,sinx),n=(2根号2+sinx,2根号2-cosx),若f(x)=m*n

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:45:56
设向量m=(cosx,sinx),n=(2根号2+sinx,2根号2-cosx),若f(x)=m*n
(1)求f(x)的最小正周期; (2)求f(2x)的单调递增区间;[要完整解题过程,]
设向量m=(cosx,sinx),n=(2根号2+sinx,2根号2-cosx),若f(x)=m*n
f(x)=m•n=cosx(2√2+sinx)+sinx(2√2-cosx)=2√2cosx+2√2sinx+sinxcosx-sinxcosx=2√2•(cosx+sinx)=2√2•√2sin(x+π/4)=4sin(x+π/4)

f(x)的最小正周期T=2π/ω=2π/1=2π

f(2x)=4sin(2x+π/4)
令-π/2+2kπ≤2x+π/4≤π/2+2kπ
得-3π/8+kπ ≤ x ≤ π/8+kπ
故f(2x)的单调递增区间为[-3π/8+kπ,π/8+kπ].