证明两个简单极限1、lim n→∞ n/[(n!)^(1/n)]=e2、an→A 求证:lim n→∞ (a1+2a2+
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:44:44
证明两个简单极限
1、lim n→∞ n/[(n!)^(1/n)]=e
2、an→A 求证:lim n→∞ (a1+2a2+3a3+……+nan)/n^2=A/2
希望各位帮帮忙,分数还可以追加啊.
我不是数学系的,不需要太严谨高深的知识.Stirling's function 对于我来说太奇奥了,能不能尽量说得简单点?两题均大概提示思路即可.
1、lim n→∞ n/[(n!)^(1/n)]=e
2、an→A 求证:lim n→∞ (a1+2a2+3a3+……+nan)/n^2=A/2
希望各位帮帮忙,分数还可以追加啊.
我不是数学系的,不需要太严谨高深的知识.Stirling's function 对于我来说太奇奥了,能不能尽量说得简单点?两题均大概提示思路即可.
我怎么觉得第一题应该用Stirling's function啊...
n趋于无穷时,n!约为[[2pai]^(1/2)][n^(n+1/2)][e^(-n)](比的极限为一)
然后代进去就可以了
还有,楼上第二题的回答好像也不是很严谨啊,如果楼主是非数学系的倒还可以考虑...
其实第二题只要证A=0的情形就可以了...我们想证:
lim n→∞ (a1+2a2+3a3+……+nan)/n^2-A/2
=lim n→∞ {[(a1+2a2+3a3+……+nan)/n^2]*[n^2/(n(n+1))]-A/2}
=lim n→∞ ((a1-A)+2(a2-A)+……+n(an-A)/[n(n+1)]
=lim n→∞ ((a1-A)+2(a2-A)+……+n(an-A)/n^2
=0
here an-A→0
由于an→0,对任给的E存在一个正整数N,凡是n>N时便有|an|N,这时
|(a1+2a2+3a3+……+nan)/n^2|
=|(a1+2a2+...+(NaN)+(N+1)a(N+1)+……+nan)/n^2|
n趋于无穷时,n!约为[[2pai]^(1/2)][n^(n+1/2)][e^(-n)](比的极限为一)
然后代进去就可以了
还有,楼上第二题的回答好像也不是很严谨啊,如果楼主是非数学系的倒还可以考虑...
其实第二题只要证A=0的情形就可以了...我们想证:
lim n→∞ (a1+2a2+3a3+……+nan)/n^2-A/2
=lim n→∞ {[(a1+2a2+3a3+……+nan)/n^2]*[n^2/(n(n+1))]-A/2}
=lim n→∞ ((a1-A)+2(a2-A)+……+n(an-A)/[n(n+1)]
=lim n→∞ ((a1-A)+2(a2-A)+……+n(an-A)/n^2
=0
here an-A→0
由于an→0,对任给的E存在一个正整数N,凡是n>N时便有|an|N,这时
|(a1+2a2+3a3+……+nan)/n^2|
=|(a1+2a2+...+(NaN)+(N+1)a(N+1)+……+nan)/n^2|
证明两个简单极限1、lim n→∞ n/[(n!)^(1/n)]=e2、an→A 求证:lim n→∞ (a1+2a2+
数列极限证明:设lim(n->∞)an=a,求证lim(n->∞) (a1*a2……an)^(1/n)=a
数列极限证明: 设lim(n->∞)an=a,求证lime(n->∞) (a1*a2……an)^(1/n)=a
设lim n→无穷An=a 证明:lim n→无穷(A1+A2+...+An)/n=a
求极限lim(n→∞)(a^n+(-b)^n)/(a^n+1+(-b)^n+1)
用数列极限证明lim(n→∞)(n^-2)/(n^+n+1)=1中证明如下:
求一道极限题lim[(a^1/n+b^1/n)/2]^n n→∞
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim(n→∞) ((2n!/n!*n)^1/n的极限用定积分求
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
◆◆◆两道极限题1、已知对于任意正整数n,都有a1+a2+…+an=n^2,则lim n→∞(1/(a2-1)+1/(a