泊松分布计算图中的结果是如何计算出来的?请说明过程.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 05:45:25
泊松分布计算
图中的结果是如何计算出来的?请说明过程.
图中的结果是如何计算出来的?请说明过程.
首先,答案肯定是正的
第一,软件直接算:
In[22]:= N[Sum[5^k/k!\[ExponentialE]^(-5),{k,2,5000}]]
Out[22]= 0.959572
第二,
因为e^x = 1 + x + x^2/2!+ ...+ x^n/n!+ ...
e^5 = 1 + 5 + 5^2/2!+ ...+ 5^k/k!+ ...
e^5 - 6 = 5^2/2!+ 5^3/3!+ ...+ 5^k/k!+ ...
后面的项越多越逼近,即k越大越准确,这里k已经到了5000,所以很接近了
所以原式 ≈ e^(-5)·(e^5 - 6) = 1 - 6e^(-5) ≈ 0.959572
第一,软件直接算:
In[22]:= N[Sum[5^k/k!\[ExponentialE]^(-5),{k,2,5000}]]
Out[22]= 0.959572
第二,
因为e^x = 1 + x + x^2/2!+ ...+ x^n/n!+ ...
e^5 = 1 + 5 + 5^2/2!+ ...+ 5^k/k!+ ...
e^5 - 6 = 5^2/2!+ 5^3/3!+ ...+ 5^k/k!+ ...
后面的项越多越逼近,即k越大越准确,这里k已经到了5000,所以很接近了
所以原式 ≈ e^(-5)·(e^5 - 6) = 1 - 6e^(-5) ≈ 0.959572