作业帮 > 数学 > 作业

公元前五世纪,芝诺用他关于无限、连续及部分和等知识,创造了著名悖论:

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 16:05:28
公元前五世纪,芝诺用他关于无限、连续及部分和等知识,创造了著名悖论:
两分法悖论:一位旅行者步行前往一个特定的地点.他必须先走完一半的距离,然后走剩下距离的一半,然后再走剩下距离的一半,永远有剩下部分的一半要走.因而这位旅行者永远走不到目的地!
但这明显错了,问题是他错在哪呢?
公元前五世纪,芝诺用他关于无限、连续及部分和等知识,创造了著名悖论:
其实很简单,这个悖论其实根本不是什么悖论,那只是一个错误的命题.因为出悖论的人只想到,二分之一的分下去,物体永远达不到D点,但那人没有想到,物体自身还存在着长度,如果物体的长度永远小于无限分下去的二分之一,那么物体就可能永远也达不到D点.但问题是,当物体自身的长度大于分的过程中的某个二分之一的时候,物体就可以到达D点了.
为了说明为什么不正确,让我们先来看看什么是二分法悖论?芝诺假设,当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一以至可以无穷的划分下去.因此,这个物体永远也到达不了D.
芝诺的二分法悖论说要从A运动到B必先至其中点C,而至C之前又必先至AC中点D,如此无限倒退,则运动不可能.但仔细考虑好像此悖论并不存在.首先,芝诺在一线段上不断取中点就预设了线段可被有穷分割为其本身不可再被分割的若干点.正如“芝诺悖论使用的是反证法,他不是从正面论证“一”,而是假定“一”的反面“多”,假定空间和时间可以分割,由此推论出与经验矛盾的结论”.也即是说芝诺预设了空间分割的终极单位点的存在,并且其本身不可再被分割,因为这些点如果能被再分割就不成其为“点”而是成为“段”了.同时,这些点是有大小的,或者说这些点是占据了一定空间的,因为本身无大小不占据任何空间的东西不具有实际存在性,而那条线段显然不能被分割为一些本身不具实际存在性的东西.
现在考虑芝诺论证中那不断向起始点A靠近的中点,由于无限靠近A,那中点与A的距离越来越小.可以想象,在某一情况下那中点与A的距离小到刚好就等于一个点本身的大小.这不仅是可能的,而且是必然的,因为如果那距离还大于一个点,那它就可以而且必然被下一个中点继续分割.但是,当那距离就等于一个点本身的大小时,那距离是不能再被分割了,因为它本身就是一个点!此时的起始点与中点之间再没有任何下一中点来“阻隔”了.也就说,芝诺论证中的中点倒退过程不是无限的,而必然是有限的.那么从直接到达这有限过程中的最接近起始点A的那一中点开始,运动就开始了.
看来,二分法论证并不能否定运动,也即得不出与经验有悖的结论.芝诺期待的反证结论——世界乃“一”而非“多”——也是不可得的.