作业帮 > 数学 > 作业

设P,Q都是3阶非零矩阵,为什么“PQ=0,所以,秩(P)+秩(Q)≤3”,什么定理?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:48:23
设P,Q都是3阶非零矩阵,为什么“PQ=0,所以,秩(P)+秩(Q)≤3”,什么定理?
设P,Q都是3阶非零矩阵,为什么“PQ=0,所以,秩(P)+秩(Q)≤3”,什么定理?
这是一个一般的结论,没有名字的.其证明如下:
设R(p)=r.
因为PQ=0,所以Q的每一列都是Px=0的解向量.
所以Q的所有列都可以由Px=0的基础解系来表示,所以
Q的列秩(即Q的秩)小于或等于基础解系所含解向量的个数3-r,
所以 秩(P)+秩(Q)≤r+3-r=3.
更一般地:
设P,Q都是n阶非零矩阵,若PQ=0,则 秩(P)+秩(Q)≤n.