作业帮 > 数学 > 作业

在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF‖AC交DE的延长线于

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 21:23:42
在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF‖AC交DE的延长线于点F
1.求证AD⊥CF
2.连接AF,试判断△ACF的形状,并说明理由
在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF‖AC交DE的延长线于
1)
∠ACB=90°,BF‖AC
∠CBF=90=∠ACB
AC=BC
∠CAB=∠ABC=45=∠EBF
DE⊥AB
所以,三角形BEF是等腰三角形,BD=BF=CD
所以,三角形ACD与三角形CBF是全等三角形
∠CAD=∠BCF
∠CAD+∠ADC=90=∠BCF+∠ADC
所以,AD⊥CF
2)
过F点作AC的垂线交于G点
BF‖AC,∠ACB=90°
所以,CDDF是矩形
CG=BF=AC/2,FG⊥AC
CG=AG
所以,三角形ACF是等腰三角形
CF=AF