作业帮 > 数学 > 作业

验证函数f(x)=x-x^3在区间[0,1]上满足罗尔定理的条件,并求出满足定理条件的ξ值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:29:03
验证函数f(x)=x-x^3在区间[0,1]上满足罗尔定理的条件,并求出满足定理条件的ξ值
验证函数f(x)=x-x^3在区间[0,1]上满足罗尔定理的条件,并求出满足定理条件的ξ值
f(x)=x-x^3在区间(0,1)上是连续的,
而x→0+时limx-x^3=0=f(0);x→1-时limx-x^3=0=f(1),所以函数f(x)=x-x^3在区间[0,1]上连续,.
又因为多项式是可导的(这是算是一个公理吧),所以函数f(x)=x-x^3在区间[0,1]上连续,在(0,1)上可导,且f(0)=f(1),满足洛尔定理.
因而存在ζ∈(0,1)使f'(ζ)=0,即1-3ζ^2=0,ζ=√1/3