定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 07:55:39
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性, 证明:利用f(
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,
证明:利用f(x)的单调性证明不等式:f(2x-1)+f(1-x)
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x)的单调性,
证明:利用f(x)的单调性证明不等式:f(2x-1)+f(1-x)
令x=0,y=0,得:
f(0-0)=f(0)-f(0)
即f(0)=0…………(1)
单独令x=0得:
f(0-y)=f(0)-f(y)
f(-y)=-f(y)…………(2)
根据以上两点得出:f(x)是奇函数.
设x>y>0,则:f(x-y)=f(x)-f(y)中
因为x-y>0
又因为当x>0,f(x)>0
所以f(x-y)>0
即f(x)-f(y)>0
因为x>y>0,f(x)>f(y)
所以在x>0上是单调递增函数.
又因为f(x)是奇函数,所以f(x)在R上是单调递增函数.
f(0-0)=f(0)-f(0)
即f(0)=0…………(1)
单独令x=0得:
f(0-y)=f(0)-f(y)
f(-y)=-f(y)…………(2)
根据以上两点得出:f(x)是奇函数.
设x>y>0,则:f(x-y)=f(x)-f(y)中
因为x-y>0
又因为当x>0,f(x)>0
所以f(x-y)>0
即f(x)-f(y)>0
因为x>y>0,f(x)>f(y)
所以在x>0上是单调递增函数.
又因为f(x)是奇函数,所以f(x)在R上是单调递增函数.
定义在R上的函数f(x)总满足:f(x-y)=f(x)-f(y)(x,y∈R).且当x>0,f(x)>0,判断函数f(x
定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x>0时,f (x)
定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y)且x>0时f(x)
定义在R上的函数f(x)对任意x,y∈R都有f(x+y)+f(x-y)=2f(x)*f(y),且f(0)≠0,判断f(x
定义在R上的函数f(x)满足:对于任意的x,y∈R,都有f(x+y)=f(x)+f(y)-2011且当x>0时,有f(x
定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y属于R,有f(x+y)=f(x)乘以f(y),f
定义在R上的函数f(x)对任意x,y属于R都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0,判断f(x
定义在R+上的增函数f(X)且满足f(x/y)=f(x)-f(y)对任意x,y∈R+恒成立.
定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断
已知定义在R上的函数f(x),满足对于任意的x、y∈R,f(x+y)=f(x)+f(y)+1.还满足当x>0时 f(x)
定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,正无穷)上递增函数
若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)=log3