作业帮 > 数学 > 作业

若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:18:40
若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?
思路我都会,就是不知道具体表示
若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?
是f(x)= √(a-x)+√x吧!
提示:易知f(x)的定义域为[0,a].
令y=f(x),则y>0,且y²=[√(a-x)+√x]²=a+2√[x(a-x)]=a+2√[-(x-a/2)²+a²/4],
当x=a/2时,y²取最大值2a,当x=0或a时,y²取最小值a,
从而f(x)的值域为[√a,√(2a)],区间长度为(√2-1)√a=2(√2-1),
所以√a=2,故a=4.