1/2×3×4×5+1/3×4×5×6+...+1/12×13×14×15+1/13×14×15×1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 15:25:39
1/2×3×4×5+1/3×4×5×6+...+1/12×13×14×15+1/13×14×15×1
1/2×3×4×5+1/3×4×5×6+...+1/12×13×14×15+1/13×14×15×16
1/2×3×4×5+1/3×4×5×6+...+1/12×13×14×15+1/13×14×15×16
利用 1/[(n+1)(n+2)]=1/(n+1)-1/(n+2),
通项 An=1/[(n+1)(n+2)(n+3)(n+4)]=[1/(n+1)-1/(n+2)]*[1/(n+3)-1/(n+4)]
=1/[(n+1)(n+3)]-1/[(n+2)(n+3)]-1/[(n+1)(n+4)]+1/[(n+2)(n+4)]
=[1/(n+1)-1/(n+3)]/2-[1/(n+2)-1/(n+3)]-[1/(n+1)-1/(n+4)]/3+[1/(n+2)-1/(n+4)]/2
=[1/(n+1)-1/(n+4)]/6-[1/(n+2)-1/(n+3)]/2,
求和 S(13)={(1/2-1/5)/6-(1/3-1/4)/2}+{(1/3-1/6)/6-(1/4-1/5)/2}+……+{(1/13-1/16)/6-(1/14-1/15)/2}+{(1/14-1/17)/6-(1/15-1/16)/2}
=[(1/2-1/5)+(1/3-1/6)+……+(1/13-1/16)+(1/14-1/17)]/6-[(1/3-1/4)+(1/4-1/5)+……+(1/14-1/15)+(1/15-1/16)]/2
=[1/2+1/3+1/4-1/15-1/16-1/17]/6-[1/3-1/16]/2
=169/12240 .
通项 An=1/[(n+1)(n+2)(n+3)(n+4)]=[1/(n+1)-1/(n+2)]*[1/(n+3)-1/(n+4)]
=1/[(n+1)(n+3)]-1/[(n+2)(n+3)]-1/[(n+1)(n+4)]+1/[(n+2)(n+4)]
=[1/(n+1)-1/(n+3)]/2-[1/(n+2)-1/(n+3)]-[1/(n+1)-1/(n+4)]/3+[1/(n+2)-1/(n+4)]/2
=[1/(n+1)-1/(n+4)]/6-[1/(n+2)-1/(n+3)]/2,
求和 S(13)={(1/2-1/5)/6-(1/3-1/4)/2}+{(1/3-1/6)/6-(1/4-1/5)/2}+……+{(1/13-1/16)/6-(1/14-1/15)/2}+{(1/14-1/17)/6-(1/15-1/16)/2}
=[(1/2-1/5)+(1/3-1/6)+……+(1/13-1/16)+(1/14-1/17)]/6-[(1/3-1/4)+(1/4-1/5)+……+(1/14-1/15)+(1/15-1/16)]/2
=[1/2+1/3+1/4-1/15-1/16-1/17]/6-[1/3-1/16]/2
=169/12240 .
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20 =
1/2×3×4×5+1/3×4×5×6+...+1/12×13×14×15+1/13×14×15×1
分数乘除法简便运算15×1/6+13/21×14+5/6×15+13/21×7{1-(1/4+1/8)}÷3/42356
观察1+2=3,4+5+6=7+8,9+10+11+12=13+14+15 求有2003个数字的式子和结果.
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15十⋯⋯⋯⋯99+100=多少?
1+2-3-4+5+6-7-8+9+10-11-12+13+14-……+1990的简便算法是什么呀,
计算1×4+2×5+3×6+4×7..+15×18
(3+4+5+6+、、、、、、+14+15)÷13简便计算
求1×3+2×6+3×9+4×12+5×15/1×2+2×4+3×6+4×8+5×10
1+2+3+4+5+6+7+8+9+10+11+12=?
(2+4+6+.+98+100)-(1+3+5+.+97+99)
(简算) (7/15-1/3)÷(1/3+1/5) (3/4+1/2)÷5/8 2/13+3/4÷9/10+1/6 [3