作业帮 > 数学 > 作业

线性代数,好难啊 

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 21:50:23
线性代数,好难啊
 
线性代数,好难啊 
设x0α+x1Aα+x2A^2α+.+x(m-1)A^(m-1)α=0,证明所有的系数x0,x1,x2,...x(m-1)都等于0.
两边用A^(m-1)作用,A^(m-1)(x0α+x1Aα+x2A^2α+.+x(m-1)A^(m-1)α)=0,得
x0A^(m-1)α+x1A^mα+x2A^(m+1)α+.+x(m-1)A^(2m-2)α=0.
因为A^mα=A^(m+1)α=.=A^(2m-2)α=0,所以x0A^(m-1)=0,得x0=0.
所以,x0α+x1Aα+x2A^2α+.+x(m-1)A^(m-1)α=0变成x1Aα+x2A^2α+.+x(m-1)A^(m-1)α=0.
两边继续用A^(m-2)作用,得x1A^(m-1)α+x2A^mα+.+x(m-1)A^(2m-3)α=0,所以x1A^(m-1)α=0,得x1=0.
继续对剩下的式子x2A^2α+.+x(m-1)A^(m-1)α=0进行类似处理,得系数x2,...,x(m-1)都是0.
所以,α,Aα,A^2α,.,A^(m-1)α线性无关.
再问: 大神你能看看我的其他两道题怎么做吗?