已知函数f(x)=x3+ax2+bx+4在(-∞,0)上是增函数,在(0,1)上是减函数.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 09:42:55
已知函数f(x)=x3+ax2+bx+4在(-∞,0)上是增函数,在(0,1)上是减函数.
(Ⅰ)求b的值;
(Ⅱ)当x≥0时,曲线y=f(x)总在直线y=a2x-4上方,求a的取值范围.
(Ⅰ)求b的值;
(Ⅱ)当x≥0时,曲线y=f(x)总在直线y=a2x-4上方,求a的取值范围.
(Ⅰ)∵f(x)=x3+ax2+bx+4,
∴f′(x)=3x2+2ax+b.
∵f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,
∴当x=0时,f(x)有极大值,即f′(x)=0,
∴b=0.
(Ⅱ)f′(x)=3x2+2ax=x(3x+2a),
∵f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,
∴−
2
3a≥1,即a≤−
3
2.
∵曲线y=f(x)在直线y=a2x-4的上方,
设g(x)=(x3+ax2+4)-(a2x-4),
∴在x∈[0,+∝)时,g(x)≥0恒成立.
∵g′(x)=3x2+2ax-a2=(3x-a)(x+a),
令g′(x)=0,两个根为-a,
a
3,且
a
3<0<−a,
x (0,-a) -a (-a,+∞)
g′(x) - 0 +
g(x) 单调递减 极小值 单调递增∴当x=-a时,g(x)有最小值g(-a).
令g(-a)=(-a3+a3+4)-(-a3-4)>0,
∴a3>-8,由a≤−
3
2,
∴-2<a≤ −
3
2.
再问: 最后答案呢?
∴f′(x)=3x2+2ax+b.
∵f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,
∴当x=0时,f(x)有极大值,即f′(x)=0,
∴b=0.
(Ⅱ)f′(x)=3x2+2ax=x(3x+2a),
∵f(x)在(-∞,0)上是增函数,在(0,1)上是减函数,
∴−
2
3a≥1,即a≤−
3
2.
∵曲线y=f(x)在直线y=a2x-4的上方,
设g(x)=(x3+ax2+4)-(a2x-4),
∴在x∈[0,+∝)时,g(x)≥0恒成立.
∵g′(x)=3x2+2ax-a2=(3x-a)(x+a),
令g′(x)=0,两个根为-a,
a
3,且
a
3<0<−a,
x (0,-a) -a (-a,+∞)
g′(x) - 0 +
g(x) 单调递减 极小值 单调递增∴当x=-a时,g(x)有最小值g(-a).
令g(-a)=(-a3+a3+4)-(-a3-4)>0,
∴a3>-8,由a≤−
3
2,
∴-2<a≤ −
3
2.
再问: 最后答案呢?
已知函数f(x)=x3+ax2+bx+4在(-∞,0)上是增函数,在(0,1)上是减函数.
已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上
已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点
已知函数f(x)=x3+ax2+bx+c(1)若函数f(x)在区间【-1,0】上是单调减函数,求
已知函数f(x)=x3-ax2+bx+3(a,b∈R),若函数在区间[0,1]上单减,求a2+b2的最小值
已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线方程为y=-12x.
已知函数f(x)=x3+ax2+bx+k满足f'(1)=f'(-2/3)=0
已知函数f(x)=x3+ax2+bx+k满足f(1)=f(-2/3)=0
已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若函数f(x)在区间[-1,0]上是单调减函数,则a2+b2
已知函数f(X)=-x3+ax2=bx=c在(-,0)上是减函数,在(0,1)上是增函数,f(x)在R上有3个零点.且1
已知函数f(x)=-x3+ax在(0,1)上是增函数.
已知函数f(x)=x3+ax2+bx+1在x=-2与x=1处有极值.