幂函数的求解函数f(x)=x^4,设函数g(x)=-qf(x)+(2q-1)x^2+1,问是否存在实数q(q
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 15:07:11
幂函数的求解
函数f(x)=x^4,设函数g(x)=-qf(x)+(2q-1)x^2+1,问是否存在实数q(q
函数f(x)=x^4,设函数g(x)=-qf(x)+(2q-1)x^2+1,问是否存在实数q(q
你题目打错了哈!(-∞,4]应该是(-∞,-4]
注意到题目所给我们的区间是(-∞,-4]与(-4,0),而在这个区间x^2是单调递减的,我们可以直接设元t=x^2
g(x)=-qf(x)+(2q-1)x^2+1
g(t)=-qt^2+(2q-1)t+1
g(x)在(-∞,4]上是减函数,并且在(-4,0)上是增函数
由于g(t)与g(x)为同一函数,所以g(t)在[16,+∞)上为增函数,在(0,16)上为减函数(增减得减,减减得增)
你把g(t)看做是g(x)与t=x^2的复合函数就会好理解一些了
题目要求q0,g(x)=-qt^2+(2q-1)t+1应该是一个关于t开口向上的函数,得[-(2q-1)/-2q]=16,代入得q=-1/30,符合条件
q是存在的
很久没看书啦,这部分忘了很多,也许有些地方漏了什么
注意到题目所给我们的区间是(-∞,-4]与(-4,0),而在这个区间x^2是单调递减的,我们可以直接设元t=x^2
g(x)=-qf(x)+(2q-1)x^2+1
g(t)=-qt^2+(2q-1)t+1
g(x)在(-∞,4]上是减函数,并且在(-4,0)上是增函数
由于g(t)与g(x)为同一函数,所以g(t)在[16,+∞)上为增函数,在(0,16)上为减函数(增减得减,减减得增)
你把g(t)看做是g(x)与t=x^2的复合函数就会好理解一些了
题目要求q0,g(x)=-qt^2+(2q-1)t+1应该是一个关于t开口向上的函数,得[-(2q-1)/-2q]=16,代入得q=-1/30,符合条件
q是存在的
很久没看书啦,这部分忘了很多,也许有些地方漏了什么
幂函数的求解函数f(x)=x^4,设函数g(x)=-qf(x)+(2q-1)x^2+1,问是否存在实数q(q
f(x)=x⁴,设g(x)=-qf(x)+(2q-1)x²+1,是否存在实数q(q
已知函数f(x)=1/2ax^2+2x,g(x)=lnx.问是否存在实数a>0,使得方程Q(x)=g(x)╱x-f'(x
如图是函数Q(x)的图象的一部分,设函数f(x)=sinx,g ( x )=1x,则Q(x
已知二次函数f(x)=x^2--16x+q+3,(1)若函数在【-1,1】上存在零点,求q的取值范围
设函数g(x)=ax2-x平方分之1+f(x)刚是否存在实数使为奇函数?说理由 解不等式f(x)-x>2
幂函数的求解2函数f(x)=x^2,是否存在正数p,使函数g(x)=1-pf(x)+(2p-1)x在[-1,2]上的值域
高中数学题设函数f(x)为Q上的函数,f(1)=1/2,f(x+2)=f(x)+f(2),则f(5)=
已知函数f(x)=x2-ax+a.设p:方程f(x)=0有实数根;q:函数f(x)在区间[1,2]上是增函数.若p和q有
已知函数f(x)=(2+x)/(2-x),设g(x)=根号下[(2-x)*f(x)]-m(x+2)-2,是否存在实数m,
设函数f(x)=sin(wx+q)+cos(wx+q)(w>0,q的绝对值
已知函数f(x)=x^2+ax+b,当p,q满足p+q=1时,试证明:pf(x)+qf(y)≥f(px+qy)对于任意实