作业帮 > 数学 > 作业

已知函数f(x)连续,且f(x)+f(-x)=sin^2,则积分(π~-π)f(x)dx=

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:00:00
已知函数f(x)连续,且f(x)+f(-x)=sin^2,则积分(π~-π)f(x)dx=
已知函数f(x)连续,且f(x)+f(-x)=sin^2,则不定积分(π~-π)f(x)dx=
已知函数f(x)连续,且f(x)+f(-x)=sin^2,则积分(π~-π)f(x)dx=
∫[-π,π]f(x)dx
  = ∫[-π,0]f(x)dx + ∫[0,π]f(x)dx
  = -∫[π,0]f(-t)dx + ∫[0,π]f(x)dx (第一式令 t=-x)
  = ∫[0,π][f(-x)+f(x)]dx
  = ∫[0,π]sin²xdx
  = ∫[0,π][(1-cos2x)/2]dx
  = ……