证明:当x>1时,(x^一1)lnx>(x一1)^2采用拉格朗日中值定理怎么证
证明:当x>1时,(x^一1)lnx>(x一1)^2采用拉格朗日中值定理怎么证
用拉格朗日中值定理证明:当x>0时,ln(1+x)-lnx>1/1+x
2、利用拉格朗日中值定理证明:当X>0 时 ,X/1-X
用拉格朗日中值定理证明当x>0时,ln(1+x)-lnx>1/(1+x)
用罗尔定理或拉格朗日中值或柯西中值定理证明:当x>1时,e^x>ex.
请问如何用拉格朗日中值定理证明当x>0时,x/(1+x)
用拉格朗日中值定理证明不等式 当x>0时,x*e^x>e^x-1
用拉格朗日中值定理证明 当x>0时,ln{[(e^x)-1]/x}
利用中值定理:当x>0时,证明x/1+x
微积分,中值定理证明题:当x>0时,x/(1+x)
诚心请问:如何用中值定理证明这个不等式:当x>0时,x/(1+x)
中值定理证明不等式ln x > [2(x-1)]/(x+1) 当x>1时恒成立