已知函数f(x)=ax2+2ax+4(0<a<3),若X1<X2,X1+X2=1-a,判断f(x1)与f(x2)的大小关
已知函数f(x)=ax2+2ax+4(0<a<3),若X1<X2,X1+X2=1-a,判断f(x1)与f(x2)的大小关
1、已知函数f(x)=ax2 +2ax+4(a>0),若x1<x2,x1+x2=0,则( ) a.f(x1)<f(x2)
1、已知函数f(x)=ax2 +2ax+4(a>0),若x1<x2,x1+x2=0,则( )
1.已知函数f(x)=ax^2+2ax+4(0<a<3).若x1<x2,x1+x2=1-a,则f(x1)和f(x2)的大
已知函数f(x)=axˇ+2ax+4(0∠a∠3),若x1∠ x2 且x1 +x2=1-a,则判断f(x1)与f(x2)
f(x)=lgx(x大于0),若x1,x2大于0,判断1/2[f(x1)+f(x2)]与f[(x1+x2)/2]的大小并
设函数f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a的取值范围是
二次函数f(x)=ax²+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f((x1+x2)/2
函数f(x)=ax^2+2ax+4(0〈a〈3),若x1小于x2,x1+x2=1-a,则 分f(x1)与f(x2)的大小
已知函数f(x)=3x/x2+x+1(x>0)若|x1|≥1,|x2|≥1,证明|f(x1)-f(x2)|<1
已知二次函数f(x)=ax²+bx+c,对任意x1,x2∈R,x1<x2,且f(x1)≠f(x2),求证:关于
已知函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),函数f(x)的最小值为y0,且y0∈[x1