已知:在△ABC中,AB=AC,点P在直线BC上,PD⊥AB于点D,PE⊥AC于点E,BH是△ABC的高.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 15:50:23
已知:在△ABC中,AB=AC,点P在直线BC上,PD⊥AB于点D,PE⊥AC于点E,BH是△ABC的高.
(1)当点P在边BC上时(如图),求:PD+PE=BH;
(2)当点P在边BC的延长线时,试探索PD、PE和BH之间的数量关系.
(1)当点P在边BC上时(如图),求:PD+PE=BH;
(2)当点P在边BC的延长线时,试探索PD、PE和BH之间的数量关系.
(1)证明:连接AP.
∵AB=AC,
∴S△ABC=S△ABP+S△ACP=12AB×PD+12AC×PE=12×AB×(PD+PE),
∵S△ABC=12AB×CF,
∴PD+PE=CF.
CF+PE=PD.
P点在BC的延长线上,过P做AB⊥PD,过C作AB⊥CF,过P作PE⊥AC,交AC的延长线于E点,连接AP
∵AB=AC,
∴S△APB=S△ABC+S△ACP=12AB×CF+12AC×PE=12×AB×(CF+PE),
∵S△APB=12AB×PD,
∴CF+PE=PD.
再问: 我们老师还给出了两个方法呢
再答: 对啊,一个就是你的延长证全等,一个就是用面积证!!!!!!
∵AB=AC,
∴S△ABC=S△ABP+S△ACP=12AB×PD+12AC×PE=12×AB×(PD+PE),
∵S△ABC=12AB×CF,
∴PD+PE=CF.
CF+PE=PD.
P点在BC的延长线上,过P做AB⊥PD,过C作AB⊥CF,过P作PE⊥AC,交AC的延长线于E点,连接AP
∵AB=AC,
∴S△APB=S△ABC+S△ACP=12AB×CF+12AC×PE=12×AB×(CF+PE),
∵S△APB=12AB×PD,
∴CF+PE=PD.
再问: 我们老师还给出了两个方法呢
再答: 对啊,一个就是你的延长证全等,一个就是用面积证!!!!!!
已知:在△ABC中,AB=AC,点P在直线BC上,PD⊥AB于点D,PE⊥AC于点E,BH是△ABC的高.
已知:在△ABC中,AB=AC,点P在直线BC上,PD⊥AB于点D,PE⊥AC于点E,BH是△ABC的高,急!
已知在△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB与点D,PE⊥AC于点E,若△ABC的面积为14问PD+
如图,在△ABC中,AB=AC,点P是BC边上的一点,PD⊥AB于D,PE⊥AC于E,CM⊥AB于M,试探究线段PD、P
如图,已知点P是△ABC中BC边的中点,PD⊥AB于点D,PE⊥AC于点E
在△ABC,AB=AC,点P是边BC上的任意一点,PD⊥AB于D,PE⊥CA于E,CF⊥AB于F.求证PD+PE=CF
如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,
如图所示,已知△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC于点E,若△ABC的面积为14
已知,如图在等腰三角形ABC中,AB=AC,P为BC的中点,PD⊥AB于点D,PE⊥AC于点E,求证:PD=PE.
急已知在三角形ABC中,AB=AC=8,P是BC上任意一点,PD垂直AB于点D,PE垂直AC于点E.若三角形ABC的面积
已知点P是△ABC中BC边的中点,PD⊥AB于D,PE⊥AC于E
在△ABC中,∠ABC的平分线BP与AC边的中垂线PQ相交于点P,过P点分别作PD⊥AB于点D,PE⊥BC于点E.求证: