作业帮 > 数学 > 作业

设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 23:29:13
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)=-2f(a)/a
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)
令F(x)=f(x)·x^2
F(0)=0
F(1)=0
F(x)在[0,1]上满足罗尔定理的所有条件
所以,存在a∈(0,1)
F'(a)=0
即f'(a)·a^2+f(a)·2a=0
所以,f'(a)=-2f(a)/a