作业帮 > 数学 > 作业

用余弦定理证明:在三角形ABC中,当∠C为锐角时,a+b>c;当∠c为钝角时,a+b<c

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:34:12
用余弦定理证明:在三角形ABC中,当∠C为锐角时,a+b>c;当∠c为钝角时,a+b<c
用余弦定理证明:在三角形ABC中,当∠C为锐角时,a+b>c;当∠c为钝角时,a+b<c
运用余弦定理证明这道题是最简单的方法.余弦定理如下:c=a+b-2abCosC ∵在三角形ABC中,0°<∠C<180°且cosC在[0,π]上单调递减 当C∈[0,π/2]时,cosC>0;当C∈(π/2,π]时,cosC<0 ①当C为钝角时,CosC<0 即(a+b-c)/2ab<0 ∵a>0,b>0 ∴ab>0 ∴a+b-c<0 即a+b<c ②当A为锐角时,CosC>0 ∴(a+b-c)/2ab>0 ∴(a+b-c)>0 即a+b>c