作业帮 > 数学 > 作业

如图1,在△ABC中,∠B=90°,AB=BC=2,点P从A出发沿直线AB运动,过点P作PF//BC,交线段AC于点F.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:12:30
如图1,在△ABC中,∠B=90°,AB=BC=2,点P从A出发沿直线AB运动,过点P作PF//BC,交线段AC于点F.
(1)点P在运动的过程中,△APF的形状_____ (填“改变”或“不变”),如果改变,请指出所有可能出现的形状;如果不变,请指出它是什么三角形.________
(2)如图2,以顶点B为坐标原点,线段AB所在直线为X轴,建立平面直角坐标系,点P从A出发的同时,点Q从C出发沿BC的延长线运动,它们的运动速度相同,连线PQ与边AC交于点D.
①当AP为何值时,S△PCQ=1/4S△ABC
②作PE垂直AC于点E,当点P,Q运动时,线段DE的长度是否改变?证明你的结论.
如图1,在△ABC中,∠B=90°,AB=BC=2,点P从A出发沿直线AB运动,过点P作PF//BC,交线段AC于点F.

分析:1)根据等腰直角三角形的性质求出∠A=∠C=45°,根据两直线平行,同位角相等求出∠AFP=∠C=45°,从而判断出△APF是等腰直角三角形;

(2)①设AP=CQ=x,表示出PB,然后根据三角形的面积公式列式计算即可得解;
②过Q作QF⊥AC交AC延长线于F,利用“角角边”证明△QCF和△PAE全等,根据全等三角形对应边相等可得AE=CF,EP=QF,从而得出AC=EF,再利用“角角边”证明△EPD和△FQD全等,根据全等三角形对应边相等可得DE=DF,从而得解.
∵∠B=90°,AB=BC,
∴∠A=∠C=45°,
∵PF∥BC,
∴∠AFP=∠C=45°,
∴△APF是等腰直角三角形,
故答案为:不变,等腰直角三角形;

(2)①设AP=CQ=x,则BP=2-x,
∵S△PCQ=
1    
4    
S△ABC,

1    
2    
x(2-x)=
1    
4    
×(
1    
2    
×2×2),
整理得,x2-2x+1=0,
解得x=1,
∴AP=1;

②答:DE的长度不改变,是个定值.
证明:如图,过Q作QF⊥AC交AC延长线于F,
则∠QCF=∠ACB=∠A=45°,
∵PE⊥AC,
∴∠AEP=90°,
∴∠AEP=∠F=90°,
∵点P、Q的速度相等,
∴AP=CQ,
在△QCF和△PAE中,

∠QCF=∠A    
∠AEP=∠F=90°    
AP=CQ    

,
∴△QCF≌△PAE(AAS),
∴AE=CF,EP=QF,
∴AC=AE+EC=CF+EC=EF,
在△EPD和△FQD中,

∠AEP=∠F=90°    
∠QDF=∠PDE    
EP=QF    

,
∴△EPD≌△FQD(AAS),
∴DE=DF,
∴DE=
1    
2    
EF=
1    
2    
AC,
∵∠B=90°,AB=BC=2,
∴AC=
AB2+BC2    
=
22+22    
=2
2    
,
∴DE=
1    
2    
×2
2    
=
2    
是定值.
再问: 能否将格式调整下 看不懂。 .大神你打的是些什么东西