作业帮 > 数学 > 作业

已知a²+b²=1,c²+d²=1,且ac+bd=0,求ab+cd?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 15:05:38
已知a²+b²=1,c²+d²=1,且ac+bd=0,求ab+cd?
已知a²+b²=1,c²+d²=1,且ac+bd=0,求ab+cd?
由于a^2+b^2=1
那么a^2=1-b^2
ac+bd=0
ac=-bd
那么(ac)^2=(-bd)^2
a^2c^2=b^2d^2
带入a^2=1-b^2
那么有(1-b^2)c^2=b^2d^2
c^2-b^2c^2-b^2d^2=0
c^2-b^2(c^2+d^2)=0
由c^2+d^2=1
得:c^2-b^2=0
c^2=b^2.①
再由(ac+bd)^2=0
分解得:a^2c^2+b^2d^2+2abcd=0
而(ab+cd)^2=a^2b^2+c^2d^2+2abcd
再把①带入.得:(ab+cd)^2=a^2b^2+c^2d^2+2abcd=a^2c^2+b^2d^2+2abcd=0
所以ab+cd=0