排序不等式问题 设a、b、c都是正实数 求证a^n*(a^2-b*c) +b^n(b^2-ac)+c^n(c^2-ab)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 18:17:04
排序不等式问题 设a、b、c都是正实数 求证a^n*(a^2-b*c) +b^n(b^2-ac)+c^n(c^2-ab)>=0
求证a^n*(a^2-b*c) +b^n(b^2-ac)+c^n(c^2-ab)>=0,其中n是任意正数
求证a^n*(a^2-b*c) +b^n(b^2-ac)+c^n(c^2-ab)>=0,其中n是任意正数
原不等式等价于
a^(n+2)+b^(n+2)+c^(n+2)≥a^nbc+b^nac+c^nab
不妨设 a≤b≤c,则ab≤ac≤bc
所以根据排序不等式:
a^nbc+b^nac+c^nab(逆序和)≤a^nab+b^nbc+c^nac
=a^(n+1)b+b^(n+1)c+c^(n+1)a (乱序和)
≤a^(n+1)a+b^(n+1)b+c^(n+1)c (正序和)
=a^(n+2)+b^(n+2)+c^(n+2)
故原不等式成立.
证毕!
a^(n+2)+b^(n+2)+c^(n+2)≥a^nbc+b^nac+c^nab
不妨设 a≤b≤c,则ab≤ac≤bc
所以根据排序不等式:
a^nbc+b^nac+c^nab(逆序和)≤a^nab+b^nbc+c^nac
=a^(n+1)b+b^(n+1)c+c^(n+1)a (乱序和)
≤a^(n+1)a+b^(n+1)b+c^(n+1)c (正序和)
=a^(n+2)+b^(n+2)+c^(n+2)
故原不等式成立.
证毕!
排序不等式问题 设a、b、c都是正实数 求证a^n*(a^2-b*c) +b^n(b^2-ac)+c^n(c^2-ab)
已知a,b,c是正实数,且a^2+b^2=c^2.求证:当n>2且n为自然数时,a^n+b^n
设a,b,c都是正数,求证a/b+c +b/c+a +c/a+b≥3/2用排序不等式解.
设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3
设m>0,n>0,实数a,b,c,d,满足a+b+c+d=m,ac=bd=n^2,求证:(a+b)(b+c)(c+d)(
数学不等式求证题设a,b,c均为正实数,求证(1/2a)+(1/2b)+(1/2c)>=(1/(b+c))+(1/(c+
2道不等式题已知a.b.c都是正数,求证:ab(a+b)+bc(b+c)+ca(c+a)≥6ac设x,y是实数,求证:X
设abc都是正实数,证明a/b+c+b/a+c+c/a+b大于等于3/2
设abc都是正实数,证明a/(b+c)+b/(a+c)+c/(a+b)大于等于3/2
已知a,b,c,d都是正实数,求证:根号ab+根号cd≤2分之a+b+c+d
设a,b,c,d均为实数,M=|ac+bd|,N=√(a^2+b^2)(c^2+d^2)比较M、N的大小
设abc都是正实数,求证a^3+b^3+c^3≥1/3(a^2+b^2+c^2)(a+b+c)