高一数学函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:01:15
高一数学函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),
已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),试问,是否存在实数a,使得G(x)在(负无穷,-1]上为减函数,并且在(-1,0)上为增函数.
假设存在实数a,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
f(x)=x²+1
g(x)=f[f(x)]=[f(x)]²+1=(x²+1)²+1=x^4+2x²+2
G(x)=g(x)-af(x)= x^4+2x²+2-a(x²+1)=x^4+(2-a)x²+2-a
函数G(x)可看作是由函数u=t²+(2-a)t+(2-a)与函数t=x²复合而成,
易知,函数t=x²在(-∞,0)上为减函数,
要使G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数
则函数u=t²+(2-a)t+(2-a) 在(0,1)为减函数,在(1,+∞)上为增函数
∴-(2-a)/2=1,
2-a= -2,
a=4,
故存在a=4,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
以上倒数第四行的那句话怎么理解?
已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),试问,是否存在实数a,使得G(x)在(负无穷,-1]上为减函数,并且在(-1,0)上为增函数.
假设存在实数a,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
f(x)=x²+1
g(x)=f[f(x)]=[f(x)]²+1=(x²+1)²+1=x^4+2x²+2
G(x)=g(x)-af(x)= x^4+2x²+2-a(x²+1)=x^4+(2-a)x²+2-a
函数G(x)可看作是由函数u=t²+(2-a)t+(2-a)与函数t=x²复合而成,
易知,函数t=x²在(-∞,0)上为减函数,
要使G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数
则函数u=t²+(2-a)t+(2-a) 在(0,1)为减函数,在(1,+∞)上为增函数
∴-(2-a)/2=1,
2-a= -2,
a=4,
故存在a=4,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
以上倒数第四行的那句话怎么理解?
以上倒数第四行的那句话怎么理解?
由关于t的二次函数u=t²+(2-a)t+(2-a)的图像是一条开口向上的抛物线,
其对称轴为:x=-(2-a)/2.
又由函数u=t²+(2-a)t+(2-a) 在(0,1)为减函数,在(1,+∞)上为增函数
得x=-(2-a)/2=1.
由关于t的二次函数u=t²+(2-a)t+(2-a)的图像是一条开口向上的抛物线,
其对称轴为:x=-(2-a)/2.
又由函数u=t²+(2-a)t+(2-a) 在(0,1)为减函数,在(1,+∞)上为增函数
得x=-(2-a)/2=1.
高一数学函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),
已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-
高一函数题,已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),试问,是否存在实数a,使得
已知f x 是奇函数 g x 是偶函数 且 f(x)-gx= x2+3x+2,则fx+gx=?
若定义在r上的偶函数f(x) 和奇函数g(x)满足fx+gx=x2+3x+1 则fx
已知a,b是实数,函数fx=x³+ax,gx=x²+bx,f‘x和g’x是fx和gx的导函数,若f‘
已知函数f(x)=︳x-a︳,g(x)=x^2+2ax+1(a为常数,a>0)且函数fx与gx的图像在Y轴上的截距相等.
已知函数f(x)=2x+m,g(x)=f(x-1)+m若函数fx与gx的图像都与圆x2+y2=1有公共点,则实数m的取值
若函数f(x)g(x)分别是R上的奇函数、偶函数且满足fx=gx=e^x
fx与gx是定义在R上的两个可导函数 若fxgx满足f'x=g'x 则fx与gx满足
gx是定义在R上的函数,h(x)=f(x)+g(x),则"fx,gx均为偶函数"是"hx为偶函数的
高一数学函数奇偶性.f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=1/x-1, (x≠±1).求f(x) 和