线性代数问题,存在矩阵n阶A和n维向量a b c,Aa =0,Ab =a,A^c=a,a不等于0,证明a b c线性无关
线性代数问题,存在矩阵n阶A和n维向量a b c,Aa =0,Ab =a,A^c=a,a不等于0,证明a b c线性无关
一直A是m×n矩阵,B是n×p矩阵,如AB=C,且r(C)=m,证明A的行向量线性无关
设A和B分别是n*m型和m*n型矩阵,C=AB为可逆阵,证明:B的列向量组线性无关
设A和B分别是n×m型和m×n型矩阵,C=AB为可逆阵,证明:B的列向量线性无关
A为m×n阶矩阵,B为n×k阶矩阵,c=AB为m×k阶矩阵,若r(A)=n,r(B)=k,证明:c的列向量线性无关
线性代数设A为n阶矩阵,且A^9=0,则A A=0 B A有一个非零特征值 C A的特征值全为零 D A有n个线性无关的
设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),
已知A是m*n阶矩阵,B是n*p阶矩阵,AB=C且r(C)=m,证明A的列向量组线性无关
设A为n×s矩阵,A的列向量组线性无关,证明存在列向量线性无关的B,使得P=(A,B)可逆,且
线性代数已知A是m×n矩阵,B是n×p矩阵,若AB=C,且r(C)=m,证明A的行向量线性无关. 这道题第一步是:因为A
设矩阵B的列向量线性无关,BA=C,证明矩阵C的列向量线性无关的充要条件是A的列向量线性无关.
设A为n阶矩阵,a为n维列向量,若Aa≠0,但A²a=0,证明:向量组a,Aa线性无关