双曲线x29−y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为( )
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 10:15:14
双曲线
x
设点P(x,y),
由双曲线 x2 9− y2 16=1可知F1(-5,0)、F2(5,0), ∵PF1⊥PF2, ∴ y−0 x+5• y−0 x−5=-1, ∴x2+y2=25, 代入双曲线方程 x2 9− y2 16=1, ∴ 25−y2 9- y2 16=1, ∴y2= 162 25, ∴|y|= 16 5, ∴P到x轴的距离是 16 5. 故选B.
双曲线x29−y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为( )
双曲线x^2/9-y^2=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为?
双曲线x^2-y^2=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为?
双曲线x²/9-y²/16=1的两个焦点为F1、F2,点p在双曲线上,若PF1⊥PF2,则点P到x轴
双曲线x2/9-y2/16=1的两个焦点为F1,F2.点p在双曲线上,若PF1垂直PF2.求P点到X轴的距离
已知双曲线C:x29−y216=1的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1
双曲线x^2/9-y^2/16=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2
双曲线x^2/4-y^2/b^2=1的两个焦点为F1,F2,点P在双曲线上,若|PF1||F1F2||PF2|成等差数列
已知双曲线x^2-y^2=1,F1,F2分别为焦点.点p为双曲线上的一点,PF1垂直于PF2,则PF1+PF2=
已知双曲线x²-y²=1.点F1.F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1
已知F1,F2是双曲线(x^2/4)-(y^/21)=1的两个焦点,点P在双曲线上若PF1=6,则PF2=?
双曲线x29-y216=1上一点P到它的一个焦点的距离为7,则点P到另一个焦点的距离为___.
|