计算xoy面上的圆周x2+y2=1围成的闭区域为底,而以面z=x2+y2为顶的曲顶柱体的体积
计算xoy面上的圆周x2+y2=1围成的闭区域为底,而以面z=x2+y2为顶的曲顶柱体的体积
计算XOY面上的圆周X^2+Y^2=aX围成的闭区域为底,以曲面Z=X^2+Y^2为顶的曲顶柱体的体积
用二重积分计算抛物面x2+y2=z和平面z=1所围的体积
设Ω是由曲面z=2-x2-y2及z=x2+y2所围成的有界闭区域,求Ω的体积.
计算I=∫∫1/(x2+y2+z2)dS,S是抛物面z=x2+y2与平面z=1所围立体的外表面
设空间闭区域Ω由曲面z=a2-x2-y2与平面z=0所围成,Σ为Ω的表面外侧,V为Ω的体积.证明:∯Σ
计算下列曲面所围成立体的体积 z=x2+2y2 和 z=6-2x2-y2
2010.09.已知x、y为实数,且(x2+y2)(x2+y2+1)=20,求x2+y2的值
在平面直角坐标系xOy中,已知曲线C1:x2+y2=1,以平面直角坐标系xOy的原点O为极点,x轴的
用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
重积分:由曲面z=根号下(x2+y2)及z=x2+y2所围成的立体体积