已知对于任意正整数n,有a1+a2+a3...+an=n^3,求(1/a2-1)+(1/a3-1)+...+(1/a10
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:46:45
已知对于任意正整数n,有a1+a2+a3...+an=n^3,求(1/a2-1)+(1/a3-1)+...+(1/a100-1)的值.
括号里面的/表示分数线,/前面的表示分子,/后面的表示分母.
括号里面的/表示分数线,/前面的表示分子,/后面的表示分母.
an=n^3-(n-1)^3=3n^2-3n+1
an-1=3n^2-3n=3n(n-1)
1/(an-1)=[1/(n-1)-1/n]/3
1/(a2-1)+1/(a3-1)+...+1/(a100-1)=[(1/1-1/2)+(1/2-1/3)+...+(1/99-1/100)]/3=(1-1/100)/3=33/100
an-1=3n^2-3n=3n(n-1)
1/(an-1)=[1/(n-1)-1/n]/3
1/(a2-1)+1/(a3-1)+...+1/(a100-1)=[(1/1-1/2)+(1/2-1/3)+...+(1/99-1/100)]/3=(1-1/100)/3=33/100
已知对于任意正整数n,有a1+a2+a3...+an=n^3,求(1/a2-1)+(1/a3-1)+...+(1/a10
对于任意的正整数n,都有a1+a2+a3...an=nx nx n 求1/a2-1+(1/a3-1)+.1/a100-1
对于任意正整数n,都有a1+a2+..+an=n^3 则lim(1/(a2-1)+1/(a3-1)+.1(an-1) )
数列an中,已知对任意正整数n,a1+a2+a3+...+an=2^n-1,则a1^2+a2^2+a3^2+...+an
数列 {an}中,对于任意正整数n,均有a(n+3)=an成立,且a1=1,a2=2,a3=3,则a2010=
已知数列{an}满足a1+a2+a3+...+an=n^2+2n.(1)求a1,a2,a3,a4
在数列{an}中,已知对任意自然数n,a1+a2+a3+...+an=(2^n)-1,求a1^2+a2^2+a3^2+.
在数列{an}中,对任意的正整数n,a1+2a2+3a3+...+nan=n(n+1)(n+2)成立,求an.
在等比数列中{an}中,已知对于任意的n属于n+,有a1+a2+a3+……+an=2^n-1,则a1^2+a2^2+a3
an=1/[根号下(n+1)+根号下(n)],则a1+a2+a3+.+a10=
(2014•呼和浩特一模)数列{an},已知对任意正整数n,a1+a2+a3+…+an=2n-1,则a12+a22+a3
问高二数列题1.等比数列中,已知对任意正整数n,a1+a2+a3+……+an=2的n次方-1,则a1²+a2&