作业帮 > 数学 > 作业

化简(1+sinx)/cosx*sin2x/2cos(π/4-x/2)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 01:25:03
化简(1+sinx)/cosx*sin2x/2cos(π/4-x/2)
化简(1+sinx)/cosx*sin2x/2cos(π/4-x/2)
2. 因为,2{cos[(π/4)-(x/2)]}^2 =cos2[(π/4)-(x/2)] 1 =sinx 1 xtan[(π/4)-(x/2)] =xsin[(π/4)-(x/2)]/cos[(π/4)-(x/2)] =2xsin[(π/4)-(x/2)]*cos[(π/4)-(x/2)]/2{cos[(π/4)-(x/2)]}^2 =xsin2[(π/4)-(x/2)]/(sinx 1) =xcosx/(sinx 1) 所以, 原式=(sinx 1){3cosx/2{cos[(π/4)-1)]}^2-2tan[(π/4)-1]} =(sinx 1)[3cosx/(sinx 1)-2cosx/(sinx 1)] =3cosx-2cosx =cosx