作业帮 > 数学 > 作业

梯形ABCD中,AB∥DC,CD=8,AB=12,S四边形ABCD=90,两腰的延长线相交于点M,则S△MCD=____

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 10:46:19
梯形ABCD中,AB∥DC,CD=8,AB=12,S四边形ABCD=90,两腰的延长线相交于点M,则S△MCD=______.
梯形ABCD中,AB∥DC,CD=8,AB=12,S四边形ABCD=90,两腰的延长线相交于点M,则S△MCD=____
∵AB∥DC,
∴△ABM∽△DCM,

S△MCD
S△MBA=(
CD
AB)2
∵CD=8,AB=12,S四边形ABCD=90,

S△MCD
90−S△MCD=(
8
12)2
解得:S△MCD=72.
故答案为:72.