作业帮 > 数学 > 作业

证明:2a分之1+2b分之1+2C分之1≥(b+c)分之1+(c+a)分之1+(a+b)分之1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 03:28:44
证明:2a分之1+2b分之1+2C分之1≥(b+c)分之1+(c+a)分之1+(a+b)分之1
证明:2a分之1+2b分之1+2C分之1≥(b+c)分之1+(c+a)分之1+(a+b)分之1
首先(a-b)^2≥0 =>(a+b)^2≥4ab
因此1/4a+1/4b =(a+b)/4ab ≥(a+b)/(a+b)^2
即 1/4a+1/4b≥1/(a+b) (1)
同理 1/4a+1/4c≥1/(a+c) (2)
1/4b+1/4c≥1/(b+c) (3)
(1)+(2)+(3)得
1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)