1 设f(x)在[01]上有二阶导数,且|f ’’(x)|≤A,其中A为常数,f(0)=f(1)=0 .证明当 0≤x≤
1 设f(x)在[01]上有二阶导数,且|f ’’(x)|≤A,其中A为常数,f(0)=f(1)=0 .证明当 0≤x≤
设f(x)在R上有定义,在x=0点连续,且f(x/a)=f(x),其中a为小于1的常数,证明f(x)为常数函数.
设f(x)在[a,b]上有二阶导数,且f''(x)>0,证明:函数F(x)=[f(x)-f(a)]/(x-a) 在(a,
设f(1+x)=af(x)恒成立,且f'(0)=b(a,b为非零常数),证明f(x)在x=1处可导
设f(x)在x=0处连续,且limx->0f(x)-1/x=a(a为常数),求f(0),f'(0)
设f(x)有二阶导数,且f''(X)>0,lim(x趋于0)f(x)/x=1 ..证明:当x>0时,有f(x)>x
设f(x)在[a,b]上有二阶导数且f(a)=f(b)=0,f'(a)f'(b)>0,证明:
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
若f(x)在〔0,1〕上有二阶导数,且f(1)=0,设F(x)=x^2f(x),证明:在(0,1
设f(x)=为定义在R内的奇函数,当x≤0时,f(x)=2^x+x²+a(a为常数),则f(1)=?
设函数在[0,1]上有二阶导数,且|f''(x)|≤M,又f(x)在[0,1]内取得最大值,证明:|f(0)|+|f(1
设函数在[0,1]上有二阶导数,且|f''(x)|≤M,又f(x)在(0,1)内取得最大值,证明:|f'(0)|+|f'