如图在直角三角形ABC中∠ABC=90 CD⊥AB垂足为D 点E在AC上 BE交CD于点G EF⊥BE交AB于点F 若
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 22:02:43
如图在直角三角形ABC中∠ABC=90 CD⊥AB垂足为D 点E在AC上 BE交CD于点G EF⊥BE交AB于点F 若
如图在直角三角形ABC中∠ABC=90 CD⊥AB垂足为D 点E在AC上 BE交CD于点G
EF⊥BE交AB于点F 若AC=mBC CE=nAE(m,n为实数),探究EF与EG的数量关系
(1)m=1,n=1 EF与EG数量关系(2)m=1,n为任意实数,EF与EG数量关系
(3)当m,n均为任意实数,EF与EG数量关系
如图在直角三角形ABC中∠ABC=90 CD⊥AB垂足为D 点E在AC上 BE交CD于点G
EF⊥BE交AB于点F 若AC=mBC CE=nAE(m,n为实数),探究EF与EG的数量关系
(1)m=1,n=1 EF与EG数量关系(2)m=1,n为任意实数,EF与EG数量关系
(3)当m,n均为任意实数,EF与EG数量关系
(1)EG=EF
【证明】过点E分别作EM垂直于AB,垂足为M;再过点E作EN垂直于CD,垂足为N
当m=1,n=1时,即AC=BC,CE=AE.三角形ABC为等腰直角三角形,角CAD=45度,CD垂直于AB,三角形ACD也为等腰直角三角形.
又点E为AC的中点,易证EM=EN,
又 角EFM+角EBF=90度,角EBF+角BGD=90度,
所以 角EFM=角BGD,
又 角BGD=角EGN
所以 角EFM=角EGN,
从而证明三角形EFM全等于三角形EGN.
故EG=EF.
(2)m=1,n为任意实数时,EF/EN=EM/EN=1/n.
【证明】m=1,n为任意实数时,即AC=BC,CE=nAE,三角形ABC为等腰直角三角形,
角CAD=45度,CD垂直于AB,三角形ACD也为等腰直角三角形.
由于CE=nAE,EM垂直于AB,则三角形AEM相似于三角形ACD,故EM/CD=AE/AC=1/(n+1);
同理由EM垂直于CD,则三角形ENC相似于三角形ADC,故EN/AD=CE/AC=n/(n+1);
由于AD=CD,由上述两式得:EM/EN=1/n.
同(1)中方法类似,有角EFM=角EGN,角EMF=角ENG=90度,三角形EFM相似于三角形EGN,
则EF/EN=EM/EN=1/n.
(3)当m,n均为任意实数,EF/EN=EM/EN=1/mn
【证明】当m,n均为任意实数,AC=mBC,CE=nAE
易证直角三角形ACD相似于直角三角形ABC,则AD/CD=AC/BC=m,
由(2)中证明有:EM/CD=AE/AC=1/(n+1)
EN/AD=CE/AC=n/(n+1)
联立这三个式子有:
EM/EN=1/mn
同理证三角形EFM相似于三角形EGN,
则EF/EN=EM/EN=1/mn.
【证明】过点E分别作EM垂直于AB,垂足为M;再过点E作EN垂直于CD,垂足为N
当m=1,n=1时,即AC=BC,CE=AE.三角形ABC为等腰直角三角形,角CAD=45度,CD垂直于AB,三角形ACD也为等腰直角三角形.
又点E为AC的中点,易证EM=EN,
又 角EFM+角EBF=90度,角EBF+角BGD=90度,
所以 角EFM=角BGD,
又 角BGD=角EGN
所以 角EFM=角EGN,
从而证明三角形EFM全等于三角形EGN.
故EG=EF.
(2)m=1,n为任意实数时,EF/EN=EM/EN=1/n.
【证明】m=1,n为任意实数时,即AC=BC,CE=nAE,三角形ABC为等腰直角三角形,
角CAD=45度,CD垂直于AB,三角形ACD也为等腰直角三角形.
由于CE=nAE,EM垂直于AB,则三角形AEM相似于三角形ACD,故EM/CD=AE/AC=1/(n+1);
同理由EM垂直于CD,则三角形ENC相似于三角形ADC,故EN/AD=CE/AC=n/(n+1);
由于AD=CD,由上述两式得:EM/EN=1/n.
同(1)中方法类似,有角EFM=角EGN,角EMF=角ENG=90度,三角形EFM相似于三角形EGN,
则EF/EN=EM/EN=1/n.
(3)当m,n均为任意实数,EF/EN=EM/EN=1/mn
【证明】当m,n均为任意实数,AC=mBC,CE=nAE
易证直角三角形ACD相似于直角三角形ABC,则AD/CD=AC/BC=m,
由(2)中证明有:EM/CD=AE/AC=1/(n+1)
EN/AD=CE/AC=n/(n+1)
联立这三个式子有:
EM/EN=1/mn
同理证三角形EFM相似于三角形EGN,
则EF/EN=EM/EN=1/mn.
如图在直角三角形ABC中∠ABC=90 CD⊥AB垂足为D 点E在AC上 BE交CD于点G EF⊥BE交AB于点F 若
如图(1),在直角△ABC中,∠ACB=90 ,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于
初三数学题.求高手如图,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,
如图,在RT△ABC中,∠ACB=90°,AC=BC,点D在AB上,点E,F分别在AC,BC上,且EF⊥CD交CD于G点
如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:E
已知:如图,在等边三角形ABC中,点D,E分别在AB,AC上,且DB=AE,CD交BE于点O,DF⊥BE,点F为垂足,1
如图 在等边三角形abc中,D,E分别为AB,AC边上的两个动点且总使AD=BE,AE与CD交于点F,AG⊥CD于点G
如图,在RT△ABC中,CD是斜边AB上的高,∠ABC的平分线BE交CD于点G,GF//AC交AB于点F,求EF垂直于A
在△ABC中,AB=AC,CD⊥AB于点D,CE为△ACD的角平分线,EF⊥BC于点F,EF交CD于点G.点M在AC上,
.如图,在三角形abc中,点d,e,f分别在bc,ab,ac上,bd=cf,be=cd,dg垂直ef于点g
如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,BE⊥CD交AC于点E,交CD于F,CE=1厘米,AE
如图,在Rt△ABC中,∠BAC是直角,E是AC上的一点,ED⊥AB于点D,BD=BC,CD,BE交于点F,求证CD⊥B