作业帮 > 数学 > 作业

设y的n-2阶导数为x/lnx,求y的n阶导数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 22:50:53
设y的n-2阶导数为x/lnx,求y的n阶导数
设y的n-2阶导数为x/lnx,求y的n阶导数
求一次导
=(x'*lnx-x*(lnx)')/ln^x
=(lnx-1)/ln^x
然后再次求导
=[(lnx-1)'*ln^x-(lnx-1)*2lnx/x]/(lnx)^4
=[ln^x-2lnx(lnx-1)]/x(lnx)^4
=[2lnx-ln^x]/x(lnx)^4=(2-lnx)/x(lnx)^3
所以n阶导是(2-lnx)/x(lnx)^3