已知f(a)=0,f在闭区间a-b连续可导,证明,∫(a到b)f²(x)dx<=(b-a)²/2∫(
已知f(a)=0,f在闭区间a-b连续可导,证明,∫(a到b)f²(x)dx<=(b-a)²/2∫(
定积分证明题:f(x)在闭区间a到b上连续,求证:,∫b到a f(x)dx=,∫b到a f(a+b-x)dx
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
设f(x)在区间[a,b]上连续,证明∫上限a,下限b.f(x)dx=∫上限a,下限bf(a+b-x)dx.
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f
f(x)在a到b上连续,且f(x)大于0,证明∫(a到b)f(x)dx∫(a到b)dy/f(y)》=(b-a)^2
设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,∫b到a f(x)dx=0,证在闭区间a,b上恒有f(x)=
设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少
f(x)在闭区间a,b 上连续 则F(X)=∫a到x (x-t)f(t)dt在开区间a,b内