作业帮 > 数学 > 作业

在三角形ABC中,AD为角A的平分线,求证:AB/AC=BD/DC

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:24:40
在三角形ABC中,AD为角A的平分线,求证:AB/AC=BD/DC
学的角平分线,最好用角分线的定理做,相似做的就算了,
这个题可能只能用相似做了,
谢谢一楼给做的广告!
在三角形ABC中,AD为角A的平分线,求证:AB/AC=BD/DC
证明:
这是三角形内角平分线定理
可以用正弦定理证明
AB:BD=sin∠ADB:sin∠BAD
AC:CD=sin∠ADC:∠CAD
∵∠ADB+∠ADC=180°,∠BAD=∠CAD
∴sin∠ADB=sin∠ADC,sin∠BAD=sin∠CAD
综上所述,AB:BD=AC:CD
即AB:AC=BD:CD
当然,用相似也可以证明,方法不唯一
过D作AC的平行线交AB于E,则
∠EDA=∠CAD=∠BAD
则EA=ED
BD:DC=BE:EA=BE:DE=BA:AC
即AB:AC=BD:DC