作业帮 > 数学 > 作业

一道函数敛散性的题∑(n=1到∞) (-1)^(n-1)*(1/ln(n+1))求此交错级数为条件收敛,还是绝对收敛.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:12:53
一道函数敛散性的题
∑(n=1到∞) (-1)^(n-1)*(1/ln(n+1))求此交错级数为条件收敛,还是绝对收敛.
一道函数敛散性的题∑(n=1到∞) (-1)^(n-1)*(1/ln(n+1))求此交错级数为条件收敛,还是绝对收敛.
原级数是条件收敛.
首先,根据莱布尼茨判别法,∑(n=1到∞)(-1)^(n-1)*(1/ln(n+1))是交错级数,且1/ln(n+1)单调递减趋于0,所以∑(n=1到∞)(-1)^(n-1)*(1/ln(n+1))收敛.
齐次原级数通项的绝对值是1/ln(n+1),因为n足够大时,1/ln(n+1) > 1/n,而∑(n=1到∞)1/n发散,所以绝对值的级数发散.
综上,条件收敛.