作业帮 > 数学 > 作业

向量a+b+c=0,|a|=3,|b|=5,|c|=7求实数k,使ka+b与a-2b垂直?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 20:13:05
向量a+b+c=0,|a|=3,|b|=5,|c|=7求实数k,使ka+b与a-2b垂直?
在线等!过程详细!不要随便搜个答案!急!
向量a+b+c=0,|a|=3,|b|=5,|c|=7求实数k,使ka+b与a-2b垂直?
由题意:a+b=-c
平方得到:a^2+b^2+2a*b=c^2
所以2a*b=7^2-3^3-5^2=15
ka+b与a-2b垂直,则(ka+b)*(a-2b)=0
展开得到:ka^2+(1-2k)a*b-2b^2=0
因为|a|=3,|b|=5,a*b=15/2
所以k*9+(1-2k)*15/2 -2*25=0
解得:k=-85/12