数字a1,a2..a2n是正整数1,2,3..2n的任意排列,求证:和数(a1+1),(a2+2)...(a2n+2n)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 01:02:23
数字a1,a2..a2n是正整数1,2,3..2n的任意排列,求证:和数(a1+1),(a2+2)...(a2n+2n)中
至少有两个数被2n除余数相同
至少有两个数被2n除余数相同
(a1+1)+(a2+2)+...+(a2n+2n)=2n(2n+1)能被2n整除
假设除2n所得余数各不相同,那这些余数为0,1,2...(2n-1)
所有余数相加得n(2n-1),不能被2n整除,与”(a1+1)+(a2+2)+...+(a2n+2n)=2n(2n+1)能被2n整除”相矛盾.
所以和数(a1+1),(a2+2)...(a2n+2n)中至少有两个数字被2n除余数相同
假设除2n所得余数各不相同,那这些余数为0,1,2...(2n-1)
所有余数相加得n(2n-1),不能被2n整除,与”(a1+1)+(a2+2)+...+(a2n+2n)=2n(2n+1)能被2n整除”相矛盾.
所以和数(a1+1),(a2+2)...(a2n+2n)中至少有两个数字被2n除余数相同
数字a1,a2..a2n是正整数1,2,3..2n的任意排列,求证:和数(a1+1),(a2+2)...(a2n+2n)
数列{an},已知对任意正整数n,a1+a2+…+an=2的n次方-1,则a2+a4+…+a2n等于多
一个等差数列的项数为2n,若a1+a3+...+a2n-1等于90 a2+a4+...a2n等于72 且a1-a2n等于
数列{an}中,a1=2,a2=3,且{anan+1}是以3为公比的等比数列,若bn=2a2n-1+a2n(n为正整数)
若an是等差数列,求证a1(2^)-a2(2^)+a3(2^)-a4(2^)+a2n-1(2^)-a2n(2^)=n/2
数列求和的对任意n属于正整数,若a2n-1,a2n+1,a2n组成公差为3的等差数列,a1=1求S2012/2012(2
一个等差数列的项数为2n,若a1十a3十…十a2n一1=90.a2十a4十…a2n=72,且a1一a2n=33,则数列的
一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数
证明等差数列等差数列{an}中,证明[a1+a2+a3……+a2n-1]/(2n-1)=an注:分子上a2n-1中2n-
数列{an}中,a1=2,a2=3,且{anan+1}是以3为公比数列,记bn=a2n-1+a2n,求证:{bn}是等比
在以d为公差的等差数列an中,设S1=a1+a2.+an,S2=an+1+an+2+a2n,S3=a2n+1+a2n+a
已知等比数列{an}的各项都是正数,且5a1,12a3,4a2成等差数列,则a2n+1+a2n+2a1+a2=( )