作业帮 > 数学 > 作业

██三角形ABC中,A+B=120度,求函数y=cos²A+cos²B的值域

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:44:52
██三角形ABC中,A+B=120度,求函数y=cos²A+cos²B的值域
██三角形ABC中,A+B=120度,求函数y=cos²A+cos²B的值域
把 B=120-A 代入cosB,再用倍角公式 cos²A=1/2(1+Cos2A) 与和差化积公式就可以求出
函数y=cos²A+cos²B的值域
y=(cos A)^2+[cos (120°-A)]^2
=1+0.5*cos(2*A+60°)
解得 1/2
再问: y=(cos A)^2+[cos (120°-A)]^2 =1+0.5*cos(2*A+60°) ① 解得 1/2