二次函数y=ax²+bx+c的图像上有两点(1,4)(5,0),对称轴是X=2,求表达式
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 20:20:18
二次函数y=ax²+bx+c的图像上有两点(1,4)(5,0),对称轴是X=2,求表达式
解法1:
二次函数y=ax²+bx+c 的 对称轴为:x = -- b / 2a
由题意,-- b /2a = 2
∴ -- b = 4a
则 b = -- 4a
此时 二次函数y=ax²+bx+c 可写为:
y = ax² -- 4ax + c
∵ 二次函数y=ax² -- 4ax + c 过 ( 1,4 )
∴ 把 x = 1 y = 4 代入得:
4 = a -- 4a + c ----------------- (1)
∵ 二次函数y=ax² -- 4ax + c 过 ( 5,0 )
∴ 把 x = 5 y = 0 代入得:
0 = 25a -- 20a + c ----------------- (2)
解 (1)(2)方程组得:a = -- 1 / 2 c = 5 / 2 则 b = -- 4a = 2
∴ 二次函数y=ax²+bx+c的表达式为 y = -- 1 / 2 x² + 2x + 5 / 2 .
解法2:
∵ 二次函数y=ax²+bx+c 经过 ( 5,0 )且其对称轴为 x = 2,
∴ ( 5,0 )关于 x = 2 的对称点( -- 1 ,0 )也在该抛物线上.
∵ 二次函数经过x轴上的两点( 5,0 )和( -- 1,0 )
∴ 此时设二次函数的表达式为 y = a ( x + 1 ) ( x -- 5 )
∵ 它经过点( 1,4 )
∴ 把 x = 1 y = 4 代入y = a ( x + 1 ) ( x -- 5 ) 得:
4 = a ( 1 + 1 )( 1 -- 5 )
∴ a = -- 1/2
∴ 二次函数的表达式为 y = -- 1/2( x + 1 ) ( x -- 5 )
亦即为:y = -- 1 / 2 x² + 2x + 5 / 2 .
小结:求抛物线解析式一般有三种方法,请您灵活掌握.
1、知道它经过已知的三个点时,设为y=ax²+bx+c
2、知道它的顶点坐标(h,k)时,设为y=a(x -- h)²+k
3、知道它经过x轴上两点(x1,0)(x2,0)时设为y=a(x -- x1)(x -- x2)
另外请您注意,二次函数y=ax²+bx+c 与 x轴 的两交点 即为
一元二次方程ax²+bx+c =0 的两根.
祝您学习顺利!
二次函数y=ax²+bx+c 的 对称轴为:x = -- b / 2a
由题意,-- b /2a = 2
∴ -- b = 4a
则 b = -- 4a
此时 二次函数y=ax²+bx+c 可写为:
y = ax² -- 4ax + c
∵ 二次函数y=ax² -- 4ax + c 过 ( 1,4 )
∴ 把 x = 1 y = 4 代入得:
4 = a -- 4a + c ----------------- (1)
∵ 二次函数y=ax² -- 4ax + c 过 ( 5,0 )
∴ 把 x = 5 y = 0 代入得:
0 = 25a -- 20a + c ----------------- (2)
解 (1)(2)方程组得:a = -- 1 / 2 c = 5 / 2 则 b = -- 4a = 2
∴ 二次函数y=ax²+bx+c的表达式为 y = -- 1 / 2 x² + 2x + 5 / 2 .
解法2:
∵ 二次函数y=ax²+bx+c 经过 ( 5,0 )且其对称轴为 x = 2,
∴ ( 5,0 )关于 x = 2 的对称点( -- 1 ,0 )也在该抛物线上.
∵ 二次函数经过x轴上的两点( 5,0 )和( -- 1,0 )
∴ 此时设二次函数的表达式为 y = a ( x + 1 ) ( x -- 5 )
∵ 它经过点( 1,4 )
∴ 把 x = 1 y = 4 代入y = a ( x + 1 ) ( x -- 5 ) 得:
4 = a ( 1 + 1 )( 1 -- 5 )
∴ a = -- 1/2
∴ 二次函数的表达式为 y = -- 1/2( x + 1 ) ( x -- 5 )
亦即为:y = -- 1 / 2 x² + 2x + 5 / 2 .
小结:求抛物线解析式一般有三种方法,请您灵活掌握.
1、知道它经过已知的三个点时,设为y=ax²+bx+c
2、知道它的顶点坐标(h,k)时,设为y=a(x -- h)²+k
3、知道它经过x轴上两点(x1,0)(x2,0)时设为y=a(x -- x1)(x -- x2)
另外请您注意,二次函数y=ax²+bx+c 与 x轴 的两交点 即为
一元二次方程ax²+bx+c =0 的两根.
祝您学习顺利!
二次函数y=ax²+bx+c的图像上有两点(1,4)(5,0),对称轴是X=2,求表达式
二次函数y=x²+bx+c的图像上有两点(3,-8)和(-5,-8),则此抛物线的对称轴是
已知二次函数y=ax平方+bx+c的图像的对称轴是直线x=-1,且过两点(1,0)和(0,-3),求此
如果二次函数y=ax的平方+bx+c的图像的对称轴是直线x=2 且经过原点 又函数有最大值2,试求二次函数表达式
若二次函数y=ax²+bx+c的图像经过点(0,-1)(5,-1)则它的对称轴方程是
二次函数y=ax²+bx+c的顶点在y=2x²-x-1的图像对称轴上,那么一定有?
已知二次函数Y=ax^2+bx+c的图像经过点(3,0),(2,-3)两点,并且以X=1为对称轴,求此二次函数的解析式
已知抛物线y=ax+bx+c满足以下条件,求函数的表达式 1、图像经过两点A(1,0)B(0,-3),且对称轴是直线x=
已知二次函数y=ax^2+bx+c(a≠0)的图像如图所示,对称轴x=1
二次函数y=ax的平方+bx+c的图像经过点(0,3)、(-2,-5),对称轴是直线x=1
已知二次函数y=ax²+bx+c的图像经过原点O和x轴上的另一点A,它的对称轴是直线x=2于x轴交于点C,直线
已知二次函数y=ax²+bx+c的图像经过(0,a)B(1,2),C(未知),求证这个二次函数图像的对称轴是直