作业帮 > 数学 > 作业

二次函数y=ax²+bx+c的图像上有两点(1,4)(5,0),对称轴是X=2,求表达式

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 20:20:18
二次函数y=ax²+bx+c的图像上有两点(1,4)(5,0),对称轴是X=2,求表达式
二次函数y=ax²+bx+c的图像上有两点(1,4)(5,0),对称轴是X=2,求表达式
解法1:
二次函数y=ax²+bx+c 的 对称轴为:x = -- b / 2a
由题意,-- b /2a = 2
∴ -- b = 4a
则 b = -- 4a
此时 二次函数y=ax²+bx+c 可写为:
y = ax² -- 4ax + c
∵ 二次函数y=ax² -- 4ax + c 过 ( 1,4 )
∴ 把 x = 1 y = 4 代入得:
4 = a -- 4a + c ----------------- (1)
∵ 二次函数y=ax² -- 4ax + c 过 ( 5,0 )
∴ 把 x = 5 y = 0 代入得:
0 = 25a -- 20a + c ----------------- (2)
解 (1)(2)方程组得:a = -- 1 / 2 c = 5 / 2 则 b = -- 4a = 2
∴ 二次函数y=ax²+bx+c的表达式为 y = -- 1 / 2 x² + 2x + 5 / 2 .
解法2:
∵ 二次函数y=ax²+bx+c 经过 ( 5,0 )且其对称轴为 x = 2,
∴ ( 5,0 )关于 x = 2 的对称点( -- 1 ,0 )也在该抛物线上.
∵ 二次函数经过x轴上的两点( 5,0 )和( -- 1,0 )
∴ 此时设二次函数的表达式为 y = a ( x + 1 ) ( x -- 5 )
∵ 它经过点( 1,4 )
∴ 把 x = 1 y = 4 代入y = a ( x + 1 ) ( x -- 5 ) 得:
4 = a ( 1 + 1 )( 1 -- 5 )
∴ a = -- 1/2
∴ 二次函数的表达式为 y = -- 1/2( x + 1 ) ( x -- 5 )
亦即为:y = -- 1 / 2 x² + 2x + 5 / 2 .
小结:求抛物线解析式一般有三种方法,请您灵活掌握.
1、知道它经过已知的三个点时,设为y=ax²+bx+c
2、知道它的顶点坐标(h,k)时,设为y=a(x -- h)²+k
3、知道它经过x轴上两点(x1,0)(x2,0)时设为y=a(x -- x1)(x -- x2)
另外请您注意,二次函数y=ax²+bx+c 与 x轴 的两交点 即为
一元二次方程ax²+bx+c =0 的两根.
祝您学习顺利!