作业帮 > 数学 > 作业

假若n条直线相交于一点,问:共有多少对对顶角?多少对邻补角?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 21:23:14
假若n条直线相交于一点,问:共有多少对对顶角?多少对邻补角?
假若n条直线相交于一点,问:共有多少对对顶角?多少对邻补角?
n条直线相交,平面分成2n个部分
对顶角:因为一对对顶角要小于pi,所以由对称性我们可以只考虑一半,即只考虑连续的n个部分中有多少个不同的角即可,角的数量为++...+,其中为n中选1的组合数,最后整理结果为2^n-2.(++...+=2^n,2^n表示2的n次方)
邻补角:一对对顶角可以找到4对邻补角(画图很容易看出),而这4对邻补角也可由另一对与该对互补的对顶角找到,所以邻补角个数为4*(2^n-2)/2=2^(n+1)-4
说的不清楚的地方请指出