作业帮 > 数学 > 作业

已知,如图抛物线y=ax^2+3ax=c(a>0)与y轴交于C点,与x轴交于A,B两点,A点在B点左侧.点B的坐标为(1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 02:04:29
已知,如图抛物线y=ax^2+3ax=c(a>0)与y轴交于C点,与x轴交于A,B两点,A点在B点左侧.点B的坐标为(1,0),OC=30
(1),抛物线的解析式;
(2),点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值:
(3),点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形 若存在,求点P的坐标;若不存在,请说明理由.
已知,如图抛物线y=ax^2+3ax=c(a>0)与y轴交于C点,与x轴交于A,B两点,A点在B点左侧.点B的坐标为(1
:(1)已知了B点坐标,易求得OB、OC的长,进而可将B、C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.
(2)根据A、C的坐标,易求得直线AC的解析式.由于AB、OC都是定值,则△ABC的面积不变,若四边形ABCD面积最大,则△ADC的面积最大;可过D作x轴的垂线,交AC于M,x轴于N;易得△ADC的面积是DM与OA积的一半,可设出N点的坐标,分别代入直线AC和抛物线的解析式中,即可求出DM的长,进而可得出四边形ABCD的面积与N点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD的最大面积.
(1)∵B(1,0),
∴B=1;
∵OC=3BO,
∴C(0,-3);
∵y=ax2+3ax+c过B(1,0)、C(0,-3),
∴c=-3 a+3a+c=0 ;
解这个方程组,得 a=3/4 c=-3
∴抛物线的解析式为:y=(3/4)x的平方+9/4x-3
(2)过点D作DM‖y轴分别交线段AC和x轴于点M、N
在 y=(3/4)x的平方+9/4x-3 中,令y=0,
得方程 (3/4)x的平方+9/4x-3=0
解这个方程,得x1=-4,x2=1
∴A(-4,0)
设直线AC的解析式为y=kx+b
∴ 0=-4K+b b=-3
解这个方程组,得 k=-3/4 b=-3
∴AC的解析式为:y=-3/4x-3
∵S四边形ABCD=S△ABC+S△ADC
= 15/2+1/2DM(AN+CN)
= 15/2+2Dm
设D(x,(3/4)x的平方+9/4x-3 )M(x,-3/4x-3)
DM=-3/4x-3-(3/4)x的平方+9/4x-3=-3/4(x+2)的平方+3,
当x=-2时,DM有最大值3
此时四边形ABCD面积有最大值 27/2