高一数学题···求详解f(x) = cos^4x - 2sinx*cosx - sin^4x
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/21 01:56:59
高一数学题···求详解f(x) = cos^4x - 2sinx*cosx - sin^4x
f(x) = cos^4x - 2sinx*cosx - sin^4x
(1)求f(x)的值域
(2)求f(x)的最小正周期
(3)求f(x)的单调递增区间
(4)求f(x)图像的对称轴方程
请给详解···谢了···
f(x) = cos^4x - 2sinx*cosx - sin^4x
(1)求f(x)的值域
(2)求f(x)的最小正周期
(3)求f(x)的单调递增区间
(4)求f(x)图像的对称轴方程
请给详解···谢了···
f(x)=cos^4x-2sinx*cosx-sin^4x
=(cos²x+sin²x)(cos²x-sin²x)-sin2x
=cos2x-sin2x
=(√2)cos(2x+π/4)
(1)∵-1≤cos(2x+π/4)≤1
∴值域为[-√2,√2]
(2)最小正周期T=2π/2=π
(3)令-π+2kπ≤2x+π/4≤2kπ
即-5π/8+kπ≤x≤-π/8+kπ
∴f(x)的单调递增区间[-5π/8+kπ,-π/8+kπ](k∈Z)
(4)令2x+π/4=kπ,即x=-π/8+kπ/2,k∈Z
∴f(x)图像的对称轴方程为x=-π/8+kπ/2,k∈Z
=(cos²x+sin²x)(cos²x-sin²x)-sin2x
=cos2x-sin2x
=(√2)cos(2x+π/4)
(1)∵-1≤cos(2x+π/4)≤1
∴值域为[-√2,√2]
(2)最小正周期T=2π/2=π
(3)令-π+2kπ≤2x+π/4≤2kπ
即-5π/8+kπ≤x≤-π/8+kπ
∴f(x)的单调递增区间[-5π/8+kπ,-π/8+kπ](k∈Z)
(4)令2x+π/4=kπ,即x=-π/8+kπ/2,k∈Z
∴f(x)图像的对称轴方程为x=-π/8+kπ/2,k∈Z
高一数学题···求详解f(x) = cos^4x - 2sinx*cosx - sin^4x
已知函数f(x)=cos^4 x -2sinx *cosx-sin^4 x
sinx+cosx/sinx-cosx=2 求sinx/cos^3x +cosx/sin^3x
已知a=(cos x+sin x,更号二cosx),b=(cosx-sinx,更号二sinx),f(x)=a·b 若2x
-4sinx+2cosx=1,sin平方x+cos平方x=1,求sinx,cosx
已知sinx+cosx/sinx-cosx=2,求2cos(π-x)-3sin(π+x)/4cos(-x)+sin(2π
(1)已知sinx+cosx=根号2/2,求sin^4x+cos^4x
已知sinx-cosx=1/2,求sin^4x+cos^4x的值
高一数学:已知函数f(x)=2cos*sin(x+π/3)-√3sin^2x+sinx*cosx
化简sin^4x/sinx-cosx - (sinx+cosx)cos^2x/tan^2x-1
f(x)=2cos*sin(x+π/3)-^3sin^2x+sinx*cosx
f(x)=(sinx)平方+2根号3sin(x+pai/4)cos(x-pai/4)-(cosx)平方-根号3